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“It is a curious situation that the sea, from which life first arose, should now be threatened by the activities 

of one form of that life. But the sea, though changed in a sinister way, will continue to exist; the threat is 

rather to life itself.” 

 

Rachel Carson 
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bioloških i evolucijskih podataka. Ovaj rad pruža uvid u biološke i ekološke čimbenike koji utječu na rast 

vrsta Callista chione, Glycymeris bimaculata i Glycymeris pilosa. Istraživanje je provedeno u istočnom 

dijelu srednjeg Jadrana (Paška uvala, ušće rijeke Cetine i Pašmanski kanal) u periodu od svibnja 2014. do 

listopada 2015. Karakterizacijom ekologije prehrane ovih vrsta u okviru njihovog okolnog staništa 

analizirano je nekoliko biokemijskih parametara, uključujući stabilne izotope i sastav masnih kiselina. 

Reproduktivno ponašanje se proučavalo primjenom dva komplementarna pristupa, histologije i 
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vrsta C. chione i G. bimaculata na svakoj lokaciji, a izotopni sastav dušika u tkivu školjkaša je bio pod 

utjecajem diazotrofne biomase koja se razlikovala među lokacijama. Varijacije među lokacijama, u 

vremenu i trajanju mriještenja vrste C. chione, su vjerojatno povezane s temperaturom, dok je kod vrste 

Glycymeris sp. mriještenje nije bilo izravno povezao. Takvi manji biološki odgovori su bitni za 
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1. GENERAL INTRODUCTION 

Marine bivalves are commonly found in littoral shores and they often live in large aggregations of 

individuals which play an important role as ecosystem engineers contributing in creating, modifying and 

maintaining the habitat (Dame, 1996; Jones et al., 1994). Due to their extensive geographic and 

bathymetric distribution bivalves are able to withstand a wide range of environmental conditions which 

regulate species’ life history traits (Gosling, 2015) raising interest in their use as paleoclimate recorders. 

Bivalve mollusk shells incorporate this information during growth making them valuable archives of 

environmental, biological and evolutionary information (Richardson, 2001). Therefore, bivalve shells can 

reveal valuable data pertinent to the reconstruction of environmental variations and life history traits 

from polar to tropical regions, and from freshwater to saltwater ecosystems (Goodwin et al., 2001).  

In recent years, studies on bivalve sclerochronology, aiming to investigate interannual variations in 

growth increment widths, as well as variations in geochemical composition have developed rapidly 

(Schöne & Gillikin, 2013). Mollusk shells have been recognized as useful archives of environmental data 

spanning from several years to millennia (Schöne et al., 2005; Butler et al., 2010; Reynolds et al., 2013). 

Bivalves preserve high resolution records of environmental conditions and life-history traits in their shell 

increments (Schöne et al., 2005) and e.g., studying oxygen isotope ratios (δ18O) in shell carbonates may 

reveal whether variations in their annual calcification rate are controlled by exogenous and endogenous 

factors (Gosling, 2015). Temperature is a crucial parameter when studying bivalve shell growth and fine-

scale studies have been able to decipher even semi-diurnal growth patterns in some organisms 

(reviewed in Schöne & Surge, 2012). The importance of each of these factors (e.g. temperature, salinity, 

phytoplankton abundance, circadian cycles, age and the biological clock) in controlling the rate and 

timing of growth varies among species and along latitudinal gradients (Richardson, 2001). It is the 

combination of temperature, food availability and food quality the one typically controlling intra-annual 

shell growth (Ansell, 1968; Witbaard, 1996; Ambrose et al., 2012; Vihtakari et al., 2016; Kubota et al., 

2017) although the combination of different growth factors is likely to be species-specific (Jones, 1980; 

Nishida et al., 2012). 

Likewise, the timing and duration of physiological processes such as the reproductive cycle vary both 

spatially and temporally, even within species (Cardoso et al., 2007; Santos et al., 2011; Verdelhos et al., 

2011; Magalhães et al., 2016). This is a result of complex interactions between exogenous and 

endogenous factors from which environmental variables, e.g., temperature and food supply, are the 

principal regulators triggering gametogenesis and spawning (Sastry, 1979; Sebens, 1987; Drent, 2004; 
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MacDonald & Thompson, 1986; Philippart et al., 2003; Sokolova et al., 2012; Carmichael et al., 2004; 

Honkoop & Beukema, 1997; De Montaudouin, 1996). 

Whether the allocation of energy is balanced or directed more to either reproduction or growth might 

certainly be species-specific and can possibly depend on the latitudinal gradient at which these species 

live and are exposed to varying temperature or food availability (e.g. Cardoso et al., 2007). The nature of 

environmental and physiological controls driving shell growth remains to be determined for a majority 

of bivalves. Thus, studies on bivalve ecology and characterization of life-history traits is a basic step to 

interpret shell growth patterns prior to use of bivalves as target organisms for paleoclimatological and 

age determination studies. 

The onset of bivalve sclerochronological studies in the Mediterranean requires the identification of 

target species that could be used as paleoenvironmental archives. This task needs a sound 

understanding of the species life-history traits to infer meaningful ecological interpretations when doing 

environmental reconstructions based on shell microgrowth patterns. The combination of fine-scale 

studies on environmental and biological factors leading shell growth has been rarely applied and is an 

extremely powerful tool to reveal present changes and test evolutionary hypothesis. High-resolution 

environmental data contribute to improve our understanding on physiological processes and other life-

history traits, biogeographic distribution of species and to efficiently manage shellfish fisheries 

resources. On this basis, the present thesis analyzes the combined effects of seawater temperature, 

food availability and reproduction into shell growth, in bivalves from the Adriatic Sea. 

 

1.1. Rationale and objectives 

At the forefront of environmental policy making due to climate change effects (IPCC, 2014) there is a 

strong need to assess marine benthic environmental changes. Understanding the imprint of the 

environment on bivalve shells is fundamental to better understand the processes responsible for these 

changes as well as for anticipating potential perturbations on these organisms and the ecosystems they 

sustain. In recent years, an increasing number of bivalve sclerochronology studies attempt to 

reconstruct the North Atlantic climate in order to predict future scenarios. In this scenarios, the 

Mediterranean stands as an interesting region for bivalve sclerochronology. However, the knowledge on 

biological and ecological drivers of shell growth in this and other regions is still limited. Identifying 

growth history patterns from extant species at a local scale is extremely powerful to assess bivalves’ 

adaptive capacity to favorable and unfavorable conditions, and provide useful information to 

reconstruct past conditions. This can be achieved setting shell growth patterns into a chronological 
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frame to estimate what controls intra-annual changes in calcification rates. The aim of this thesis is to 

assess the environmental and biological drivers of shell formation by analyzing: (1) environmental 

variables (2) reproduction (3) feeding ecology and (4) shell growth of target bivalve species. Three target 

species were selected based on their abundance, relatively long lifespans and ecological role in the 

Adriatic, Mediterranean and Atlantic Seas: Callista chione (Linnaeus, 1758), a commercially important 

species, and two glycymeridids, Glycymeris bimaculata (Poli, 1795) and Glycymeris pilosa (Linnaeus, 

1767). Sampling was conducted at three locations in the eastern Adriatic coast including Pag Bay, Cetina 

River mouth and Pašman Channel aiming to account for inter- and intraspecies biological responses in 

different habitats. The objectives of the thesis are: 

 

 Analyze the pelagic-benthic coupling in the shallow waters of the middle Adriatic coast through 

the characterization of suspended particulate matter (SPM) and sediment (Sed) at sampling 

locations 

 Describe the reproductive cycle of the studied species applying two methodological approaches: 

histological analysis and gonadosomatic index 

 Describe body mass index, reproductive investment, reproductive output and fecundity of C. 

chione and intraspecific comparison between two sites 

 Assess the influence of environmental variables (e.g., temperature) and food supply on the 

reproductive processes 

 Describe spatio-temporal variations in the feeding ecology of Glycymeris sp. and C. chione 

throughout the combined application of stable isotopes and fatty acid analysis, and other 

biomarkers (e.g., C:N ratio, Chl a, biogenic silica) 

 Evaluate the isotopic and fatty acid feeding niches with the application of a two-source mixing 

model 

 Describe microgrowth patterns of shell growth throughout sclerochemistry: micromilling from 

shell surface in C. chione and from cross-sections in G. bimaculata 

 Interrelate previous environmental and biological responses to shell growth and concluding 

which are the driving factors of timing and rate of growth 

 Identify whether these patterns are characteristic of a given species or of a given habitat 
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2. LITERATURE REVIEW 

 

2.1. Species of study 

2.1.1. Callista chione 

The smooth clam Callista chione is a marine venerid bivalve inhabiting the soft bottoms of Atlantic and 

Mediterranean coastal areas (Poppe & Goto, 1993). It is a suspension-feeding organism that burrows in 

sediments in the shallow waters. In many Mediterranean countries this species is commercially 

harvested by dredging boats (Tirado et al., 2002; Ramón et al., 2005) and in the shallow coasts of Greece 

and Croatia, it is also collected by skin or scuba-diving (Ezgeta-Balić et al., 2011; Metaxatos, 2004). 

Callista chione is a moderately long-lived bivalve with a longevity of over four decades (Ezgeta-Balić et 

al., 2011) and a shell length up to 100 mm (Poppe et al., 1993). Due to social demands on the shellfish 

market (Ezgeta-Balić et al., 2011) and the ongoing scarcity of natural beds (Ramón et al., 2005; Baeta et 

al., 2014), a sustainable management and close monitoring on the stock assessment needs to be 

implemented to protect natural beds and secure the long term fishery of this species. Additionally, C. 

chione has been found in middle Miocene rocks in Hall et al., (1974) and recent Mediterranean 

archeological research documented it as a marine resource for Neanderthals (Cortés-Sánchez et al., 

2011; Romagnoli et al., 2016). 

2.1.2. Glycymeris bimaculata  

Species Glycymeris bimaculata predominantly occurs in the Mediterranean (Poppe et al., 1993), 

although it has also been found in the east Atlantic Ocean off the Canary and Madeira Islands, Portugal 

and NW Morocco (Nolf & Swinnen, 2013; Poutiers, 1996). In the Mediterranean Sea, it is the largest 

species of the Glycymerididae family, usually attaining a length of around 80 mm and estimated to reach 

up to 123 mm (Poppe et al., 1993; Nicol, 1964). In the eastern Adriatic Sea, G. bimaculata is a common 

burrowing bivalve inhabiting sandy and gravelly shallow bottoms. The largest specimen found in the 

Adriatic measured 99 mm in length (Legac & Hrs-Brenko, 1999). An estimated maximum longevity of 65 

years and a chronology spanning 16 years revealed its potential use as sclerochronological archive 

(Bušelić et al., 2015). It is mainly used as bait for fishing or ornamental purposes, thus, with no economic 

interest. Sporadically might be consumed by local people (Legac & Fabijanić, 1994). 

2.1.3. Glycymeris pilosa  

Glycymeris pilosa is distributed along the Mediterranean, and the east Atlantic Ocean off the Canary and 

Madeira Islands and the coasts of Morocco, Mauritania, Western Sahara and Portugal (Goud & Gulden, 

2009; Nolf et al., 2013; Poutiers, 1996). The northernmost documented limit is the Ria de Arousa in NW 
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Spain (Goud et al., 2009). As its congeneric G. bimaculata, it can reach up to 96 mm length (Huber, 

2010) and inhabits sandy, muddy or gravelly bottoms. In the Adriatic Sea, and most likely in other 

Mediterranean regions, records of G. pilosa have been traditionally mis-identified as G. glycymeris 

(Linnaeus, 1758) (Legac et al., 1999; Peharda, D Ezgeta-Balić, et al., 2010) as recently revealed (Purroy et 

al., 2016). The presence of G. pilosa has been confirmed in the coasts of Greece and Israel (Sivan et al., 

2006; Lécuyer et al., 2012) and along the entire Croatian coast. The largest specimen found in the 

Adriatic measured 94.0 mm in length (Peharda unpublished data). A recent study established the 

maximum longevity of G. pilosa at 69 years and a robust chronology spanning 44 years, supporting its 

potential as sclerochronological archive in the Mediterranean (Peharda et al., 2016).  

Overall, the three species inhabit Adriatic waters but all do not always coexist in the locations that were 

sampled for this thesis (Fig. 2.1). 

 

Figure 2.1. Target species: (a) Callista chione, (b) Glycymeris bimaculata and (c) Glycymeris pilosa. Scale bar 1 cm. 

 

2.2. Feeding ecology 

Bivalves are suspension-feeding organisms and participate on the transfer of particulate organic matter 

(POM) between the water column and the surface sediment layer (Schubert & Calvert, 2001). In the 

sediment-water interface, physical factors (e.g. currents, wind) and bioturbation enhance resuspension 

enabling a continuous supply of POM to suspension feeding organisms (Orvain et al., 2012; Dubois et al., 

2014). Bivalves certainly feed upon phytoplankton but other sources such as detritus, bacteria, 

microphytobenthos and zooplankton constitute an important component of their diet (Peharda et al., 

2012; Davenport et al., 2000; Grall et al., 2006; Kharlamenko et al., 2011; Ezgeta-Balić et al., 2012). In 

temperate areas, benthic consumers are able to shift their diets along the year adapting to the available 

material in suspended POM (Antonio et al., 2010), e.g. following the magnitude and seasonality of 

primary production. Filter feeding organisms can modify the chemical characteristics of particular 
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matter both in the pelagic and benthic pools (e.g. Page & Lastra, 2003; Prins et al., 1997; Charles et al., 

1999; Ward & Shumway, 2004). Thus, investigating the origin and availability of food resources in POM 

in relation to their contribution to bivalve’s diet allows to distinguish variations in the trophic activity, 

essential to better understand the role of selective feeding within the ecosystem (Riera & Richard, 1996; 

Carlier et al., 2007; Dubois et al., 2012). Assessing the role of bivalves in the benthic-pelagic coupling 

provides clues about the origin and preferential uptake of food within the pool of POM and potential 

limitations due to inter or intra-specific competition (Dame, 1996; Dubois et al., 2014) improving our 

understanding on the ecological and biogeochemical functioning in these systems. In aquatic 

ecosystems, stable isotopes (e.g. δ13C and δ15N) and fatty acid concentrations have also been used to 

analyze the food web structure and infer trophic relationships within and between ecosystems (e.g. 

Kharlamenko et al., 2008; Kharlamenko et al., 2011; Antonio & Richoux, 2016b; Giraldo et al., 2016; 

Pérez et al., 2013). 

 

2.2.1. Stable Isotope Analysis  

Stable isotope (SI) analyses have been widely used to describe diet composition, trophic level and 

habitat characteristics in marine organisms (DeNiro & Epstein, 1978; Peterson & Fry, 1987; Lorrain et al., 

2002; Lopez et al., 2016) due to a time integrated signal of the assimilated food sources in animal tissues 

(Peterson et al., 1987; Martínez del Rio et al., 2009; Ezgeta-Balić et al., 2014). The measurement of δ13C 

allows the identification of the main primary producers (Post, 2002) and also discriminates sources from 

terrestrial and marine, and from benthic and pelagic systems (e.g. Savoye et al., 2003; Cloern et al., 

2002). On the other hand, the δ15N signature is useful to identify changes through the food chain, based 

on the principle that excretion and respiration of lighter isotopes by consumers increase their δ15N 

content (Peterson et al., 1987; Carlier et al., 2015; Fry & Sherr, 1984) and even for identifying the so-

called isoscapes, to trace geographic changes (Cherel & Hobson, 2007; MacKenzie et al., 2011). 

Additionally, SI may provide information on variations in productivity and nutrient levels (Riera, 2007), 

biological responses to anthropogenic influences such as pollution or recreational activities (Puccinelli et 

al., 2016; Alomar et al., 2015), and can also work as bioindicators (Post, 2002; Fry & Allen, 2003; 

Carriquiry et al., 2016). The recent development of models of trophic structure, known as mixing 

models, allow to place the trophic position of an organism in a food web in relation to the main food 

sources (Phillips et al., 2014 and references therein). The combination of several consumers allows to 

infer resource partitioning and to assess the degree of trophic variability at an inter- and intrapopulation 

level (Layman et al., 2012). In this way, SI are powerful to determine connections between the diet and 

the life-history traits of consumers or population dynamics. 
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2.2.1.1. Stable isotope analysis in food sources 

In the particulate organic matter (POM) stable isotope signatures are used to decode biogeochemical 

coastal processes involving the production, origin and use of organic matter (OM), denitrification and 

deposition in sediments. In coastal and continental margin areas, SI are used to trace inputs of 

terrestrial or marine POM, and anthropogenic inputs such as sewage-derived organic matter, 

agricultural runoff, recreational boats or nutrients (Lee Van Dover et al., 1992; Carreira et al., 2002). Few 

studies have reported carbon and nitrogen isotope compositions of organic matter in the Adriatic Sea. 

The characterization of suspended particulate matter (SPM) in the Istra Peninsula (northern Adriatic), 

was conducted to assess the impact of OM derived from anthropogenic influence in coastal sites (Žvab 

Rožič et al., 2015). High δ15N values and relatively depleted in δ13C in SPM reflected insufficient local 

septic systems and the influence of riverine terrestrial material (4.2 to 13.8‰ δ15N and -24.1 to -22‰ 

δ13C) whereas lighter 15N values were associated with the effect of purification plants (-3.8 to 1.1‰ δ15N 

and -22.5 to -21.3‰ δ13C). Additionally, nitrogen isotope analysis from water samples at sites with 

different amounts of anthropogenic contribution were also studied in the central eastern Adriatic which 

overall ranged from -1.3 to 13.8‰ (Žvab et al., 2010) and from 1.8 to 9.7‰ (Dolenec et al., 2011; 

Dolenec et al., 2007). The most 15N-enriched values corresponded to those sites most influenced by 

human activities (Žvab et al., 2010; Dolenec et al., 2011). 

Studies on the surface sediment layer were conducted in the north Adriatic (Ogrinc et al., 2005) and in 

Adriatic open waters (Faganeli et al., 1994). Average δ13C values in surficial Adriatic sediments ranged 

from -28.6 to -23.5‰ pointing out a higher contribution of terrestrial origin in the western Adriatic (due 

to major influence of river Po) and in the southeastern Adriatic (also derived by riverine inputs), in 

contrast to eastern Adriatic coast which showed more marine derived values (-24.6 to -22.5‰) (Faganeli 

et al., 1994). In Ogrinc et al., (2005) values ranged from -25.5 to -21.5‰ (δ13C) and from 1.7 to 5.6‰ 

(δ15N), whereas the elemental organics composition revealed quite low values ranging from 0.5 to 1.3% 

(OC), 0.1 to 0.2% (N) and C:N atomic ratios from 4.2 to 38. The light isotopic values and C:N ~ 18 were 

distinguished under terrestrial influence whether more isotopically enriched values and C:N ~ 8 were 

linked to marine derived OM (Ogrinc et al., 2005).  

 

2.2.1.2. Stable isotope analysis in consumers 

Studies on δ15N in tissues from benthic invertebrates in the central eastern Adriatic Sea reflected the 

local environmental conditions. Benthic organisms were generally enriched with respect to SPM varying 

from -1.3 to 11.9‰ (Žvab et al., 2010) and in Mytilus galloprovincialis Lamarck, 1819 values ranged from 
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3.3 to 8.2‰ (Dolenec et al., 2011). In Žvab et al., (2010), the enrichment of δ15N values was suggested to 

be a result of untreated municipal, industrial and agricultural pollution in the areas. Dual nitrogen and 

carbon isotope analyses were studied in four bivalve species including M. gallloprovincialis, Ostrea 

edulis Linnaeus, 1758, Modiolus barbatus (Linnaeus 1758) and Arca noae Linnaeus, 1758), from Mali 

Ston Bay (southern Adriatic), to observe seasonal variations in two different tissues, muscle and 

digestive gland (Ezgeta-Balić et al., 2014). Seasonal variations were more pronounced in the digestive 

gland, suggesting that this tissue better reflects recent food ingestion and trophic patterns. Mean δ15N 

values ranged from 2.0 to 5.3‰ while mean δ13C ranged from -24.0 to -21.8‰ and both values were 

more isotopically enriched in muscle tissue than in digestive gland (Ezgeta-Balić et al., 2014). These 

individuals were also analyzed for fatty acids (FA) to identify their main food sources (Ezgeta-Balić et al., 

2012). In a like manner, A. noae from Pašman area (middle Adriatic Sea) was analyzed (Župan et al., 

2014). Accordingly, muscle showed more isotopically enriched values averaging -19.1±0.8‰ (δ13C) and 

5.5±0.7‰ (δ15N) than the digestive gland which had average values of -21.3±1.2‰ (δ13C) and 4.1±0.4‰ 

(δ15N). Results from these studies reveal the importance of choosing the right tissue accordingly to the 

main study goal. 

Up to date, just one isotopic record in soft tissues has been found in the literature for C. chione, with 

mean values of -19.4±0.5‰ (δ13C) and 4.7±0.4‰ (δ15N), for a population from the NW Mediterranean 

(Carlier et al., 2007). The same holds true for the Glycymeris genus with only one study reported for G. 

glycymeris across a large depth gradient in the Bay of Brest (Nerot et al., 2012). These results showed 

more depleted values at the deepest station (~220 m) averaging values of -19±0.2‰ (δ13C) and 

2.8±0.4‰ (δ15N) than at the shallowest one (6 m) where averaging values of -15.9±0.2‰ (δ13C) and 

9.4±0.3‰ (δ15N) were noted (Nerot et al., 2012). 

 

2.2.2. Fatty Acid Analysis 

Fatty acids are involved in the organism’s energy storage (Parrish et al., 2000) and are effective tracers 

of food sources, since they remain mostly invariable through trophic pathways, and are specific for 

different groups of organisms, e.g. primary producers, heterotrophs (e.g. Napolitano et al., 1997; 

Dalsgaard et al., 2003). However, the higher the trophic level, the more complex is the interpretation of 

FA as dietary indicators (Budge et al., 2002) due to the incorporation of multiple diet sources and 

diverse metabolic pathways (Dalsgaard et al., 2003). FA are good discriminators of food sources in 

suspended POM and sediment (Bergamino et al., 2014; Ricardo et al., 2015; El-Karim et al., 2016; 

Connelly et al., 2016) and they are also useful describing the seasonal and spatial variations in these 

pools as potential food sources for benthic organisms (Boon & Duineveld, 1996).  
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The composition of FAs in the digestive gland of bivalves play an important role as metabolic energy 

reserves; thus, their analysis have been employed to trace recent food ingestion (weeks‒months) 

(Deudero et al., 2009; Ezgeta-Balić et al., 2012; Najdek et al., 2013). Few studies have considered the 

significance of incorporating spatial and temporal changes in environmental biochemical variations (e.g. 

SI, FA) to gain an insight in recent food assimilation in benthic organisms, particularly occupying 

different environments (Ventrella et al., 2008; Yurkowski et al., 2016; Gonçalves et al., 2012). Fine-scale 

studies describing spatio-temporal patterns in primary producers allow assessing the variability of the 

diet of secondary consumers within and among species which are essential for comprehensive 

ecological studies (Underwood et al., 2000; Antonio et al., 2012). 

 

2.2.2.1. Fatty acids in food sources 

Primary producers lay down the main FA profiles in marine food webs, consisting of phytoplankton 

(microalgae and photoautotrophic bacteria) and macroalgae. Microalgae support pelagic and offshore 

benthic food webs whereas macroalgae are present mostly in shallow coastal areas (Kayama et al., 

1989). Photoautotrophic bacteria have a minor influence on the dynamics of marine ecosystems but 

heterotrophic bacteria contributing to microbial food web and terrestrial matter, are particularly 

important in coastal and estuarine ecosystems (Dalsgaard et al. 2003 and references therein). Numerous 

laboratory studies have examined the composition of fatty acids in marine microalgae (e.g. reviewed by 

Ackman et al., 1968; Kharlamenko et al., 2008; Kelly & Scheibling, 2012) concluding that individual FA 

cannot be used as taxonomic indicators but combinations of FA certainly reveal microalgae 

assemblages. The ratio of C16:1/C16:0 (>1) and the relative dominance of C20:5 (n-3) (EPA), C22:6 (n-

3)/C20:5 (n-3) (DHA/EPA) (<1) and C14:0 are considered as diatom indicators (Ackman et al., 1968; 

Kharlamenko et al., 1995; Léveillé et al., 1997; Budge & Parrish, 1998) while the ratio of DHA/EPA (>1), 

DHA, 16:0 and C16:1/C16:0 (<1) are predominant in dinoflagellates (Dalsgaard et al., 2003; Budge et al., 

1998). Herbivorous calanoid copepod markers are C20:1 and C22:1 (Falk-Petersen et al., 1987). A marker 

of zooplankton indicator of carnivory (Sargent & Falk-Petersen, 1988) and detrital matter (Fahl & 

Kattner, 1993) is C18:1(n-9). However, zooplankton is also characterized by 18:1(n-9), 18:2(n-6), 20:4(n-

6) (ARA) and DHA (Kharlamenko et al., 2001). The level of (n-3) PUFA (EPA, DHA and ARA), considered as 

essential FA (EFA; Alkanani et al., 2007) are used as important food quality indicators (e.g. Antonio and 

Richoux 2016) which are transferred to microzooplankton (Ventrella et al., 2008). EFAs are necessary 

components of cell membranes and play an important role in many cellular activities in higher 

consumers (Ahlgren et al., 2009). Plants are the only organism able to biosynthesize de novo these PUFA 

and derivatives, 18:2(n-6) and 18:3(n-3) and i.e. EPA, DHA, ARA, which are essential for heterotrophic 
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organisms (Smith & Fitzpatrick, 1996). Usually, the C18:2(n-6) PUFA is associated with terrestrial sources 

when coupled to 18:3(n-3) at concentrations > 2.5 (Budge et al., 1998; Parrish et al., 1996; Fischer et al., 

2014), seagrass (Kharlamenko et al., 2011), protozoa (Zhukova & Kharlamenko, 1999) and even to 

agricultural products (Napolitano et al., 1997). Main FA bacteria-specific are 15:0, 15:0ai, 15:1, 17:0, 

17:0a1, 17:1 and 19:0, thus, combinations of FA are used to detect occurrence of bacteria (Mayzaud et 

al., 1989; Najdek et al., 2002; Fahl et al., 1993). Bacteria also biosynthesize, in common with eukaryotes, 

16:1(n-7) and 18:1(n-7) FA. Therefore, if PUFA is present in large amounts, the origin would likely derive 

from eukaryotic production rather than bacterial (Dalsgaard et al., 2003). Marine heterotrophic bacteria 

abound in sediments, particularly after main phytoplankton blooms, as colonizers of settling particulate 

matter (Najdek et al., 2002); therefore, they are critical in recycling DOM and POM to higher trophic 

levels. For this reason, the FA composition in these systems is valuable to resolve the source of sediment 

particles, which is mainly dominated by SFA and MUFA. Further, elevated concentrations of 18:2(n-6) 

have been attributed to agricultural products scattered in the coast (Napolitano et al., 1997) or to some 

protozoa (Zhukova et al., 1999) and C16:0, C16:1 and C18:0 to domestic sewage (Boëchat et al., 2014). A 

summary of FA trophic markers (FATM) and their sources is listed in Table 2.1. 

Table 2.1. Summary of FATM and their sources. 

FATM Sources References 

20:5(n-3) - EPA Diatoms Budge & Parrish (1998);  

16:1(n-7)   Dalsgaard et al. (2003); 

16:1(n-7)/16:0 > 1   Leveille et al. (1997) 

22:6(n-3)/20:5(n-3) < 1 - DHA/EPA < 1     

C14:0     

22:6(n-3) - DHA Dinoflagellates Budge & Parrish (1998);  

22:6(n-3)/20:5(n-3) > 1 - DHA/EPA > 1   Parrish et al., (2000); 

16:1(n-7)/16:0 < 1   Dalsgaard et al. (2003) 

C16:0     

C18:4     

18:1(n-9) Zooplankton Sargent & Falk.Petersen (1988); 

    Kharlamenko et al. (2001); 

    Zhukova & Kharlamenko et al. (1999) 

C20:1 Herbivorous calanoid  Falk-Petersen et al. (1987) 

C22:1 copepods   

Ʃiso- and anteiso- C15 and C17 Detritus/Bacteria Mayzaud et al. (1989);          

18:1(n-7)   Najdek et al. (2002); 

18:1(n-9)   Fahl & Kattner (1993); 

C20:0   Galap et al. (1999) 

18:2(n-6) + 18:3(n-3) > 2.5 Terrestrial plants Budge & Parrish (1998) 

20:4(n-6) - ARA Heterotrophic flagellates Lorrain et al. (2002) 

  Invertebrate larvae   

 



11 

 

Studies on the composition of FA in POM in the northern Adriatic Sea, one of the most productive 

regions of the Mediterranean largely influenced by the River Po inputs, revealed that sediment was 

mainly composed by SFA (mainly C16:0) and MUFA, mainly C16:1 and C18:1 (Najdek, 1993). These two 

FA are indicative of marine origin OM and were reported in higher concentrations during spring and 

summer, whereas the lowest concentrations occurred during the phytoplankton bloom in the winter-

early spring. Other studies have focused on the mucilaginous aggregates which episodically are recorded 

in the area (Najdek et al., 2002). Studies on FA composition in SPM or Sed in other areas of the Adriatic 

haven’t been found. 

 

2.2.2.2. Fatty acids in consumers 

During recent decades, fatty acid markers have been used to interpret bivalve diets usually only on one 

species and only few studies addressed spatial and/or temporal variability. In studies under laboratory 

conditions, bivalves have proved their ability to elongate or desaturate FA, e.g. 16:1(n-7) to 18:1(n-9) to 

20:1(n-9) among others (Albentosa et al., 1996), what is hard to follow under natural conditions. PUFA 

are used as energy reserves during periods of nutritional shortage (Freitas et al., 2002). The ARA/EPA 

ratio and NMID (non-methylene-interrupted dienoic fatty acid) have been found to be higher in bivalve’s 

larvae and eggs (e.g. Ahn et al., 2000) thus, their presence can be considered as a contribution of 

bivalve’s larvae as food source (Ezgeta-Balić et al., 2012). Also, ARA is a precursor of prostaglandins 

which have an influence on the reproduction in mollusks (Soudant et al., 1999), by stimulating the 

contraction and release of gametes during the timing of spawning (Palacios et al., 2005). This association 

has been reported in studies in visceral mass (Galap et al., 1999) which showed higher concentrations of 

FA in general during the main spawning period and in the muscle (Ezgeta-Balić et al., 2012) pointing out 

a higher concentration of ARA during spawning. A high degree of unsaturation (UND) is characteristic of 

healthy mollusks (Dupčić Radić et al., 2014). 

Detritus, diatom, dinoflagellate, zooplankton and EFA markers were the most abundant in consumer 

studies in the southeastern Adriatic Sea. Filter-feeders such as Mytilus galloprovincialis, Ostrea edulis 

and Modiolus barbatus (Ezgeta-Balić et al., 2012), Pinna nobilis Linnaeus, 1758 (Najdek et al., 2013), Arca 

noae (Ezgeta-Balić et al., 2012; Dupčić Radić et al., 2014) and G. nummaria (Linnaeus, 1758) (Najdek et 

al., 2016) have revealed ingestion of a mixed diet. Studies of FA indicated that different tissues had 

different carbon turnover rates (Tieszen et al., 1983) as demonstrated between the digestive gland and 

adductor muscle tissues (Ezgeta-Balić et al., 2012). For example, ARA, EPA and DHA decreased from May 

to September and increased until March. C16:1/C16:0 ratios were higher in spring-summer and lower in 

autumn-winter, conversely to DHA/EPA ratios (Ezgeta-Balić et al., 2012). In general, low levels of 
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dinoflagellate markers were found in this study, in contrast to important contribution of EFA, most likely 

reflecting a carnivorous diet. Additionally, larviphagy greatly contributed to their diet, likely associated 

with sampling in aquaculture farms. A high concentration of SFA has been previously reported in G. 

nummaria (Najdek et al., 2016) and G. glycymeris (Galap et al., 1999).  

An effective way in identifying major sources of organic matter contributing to the diet of benthic 

invertebrates and investigating food web dynamics is combining SI and FA biomarkers analysis 

(Dalsgaard et al., 2003; Fry, 2006; Kharlamenko et al., 2008; Budge et al., 2008). Notwithstanding, other 

biomarkers are often used as indicators of the quality of organic matter by characterizing the 

composition of POM in coastal ecosystems. Among these, studies on elemental C:N ratios and 

Chlorophyll a (Chl a) abound, but few carry biogenic silica content analysis, which is a major component 

of marine biogenic matter fundamental for diatom growth (Ragueneau et al., 2002; Leblanc et al., 2003; 

Alomar et al., 2015). Therefore, an extended characterization including the above mentioned biological 

and environmental parameters (e.g., temperature, salinity) greatly contribute to an accurate 

determination of the sources of organic matter in relation to environmental conditions.  

 

2.3. Reproduction 

In marine invertebrates from temperate waters, sexual reproduction is cyclic with distinctive seasonal 

patterns (Gosling, 2015). In bivalves, the timing and duration of the reproductive cycle and in particular, 

spawning, are believed to be determined by the interaction between endogenous (genetic and 

physiological) and exogenous (environmental) factors (reviewed in Sastry, 1979; Gosling, 2003). 

Temperature and food availability are the main exogenous factors commonly attributed to influence the 

reproductive timing (Sastry & Blake, 1971; Gosling, 2003; MacDonald et al., 1986). Reproductive 

strategies between bivalve populations may depend on the latitudinal gradient (Santos et al., 2011; 

Verdelhos et al., 2011; Cardoso et al., 2007; Steingrimsson, 1989) and local environmental conditions 

(Verdelhos et al., 2011; Sola, 1997; Magalhães et al., 2016; Sebens, 1987). For instance, the transplant of 

specimens with particular latitudinal reproductive patterns followed the same reproductive strategy as 

in the original population, suggesting that a genetic component is controlling certain physiological 

mechanisms (Paulet et al., 1988) and evidencing that the adjustment to new environmental conditions it 

is not immediate. On the other hand, earlier spawning events (Philippart et al., 2003; Drent, 2004; Gam 

et al., 2010) or a decrease in the reproductive investment (Pörtner & Farrell, 2008; Sokolova et al., 2012) 

and output (Philippart et al., 2003; MacDonald et al., 1986) have been observed as a result of increasing 

temperatures. 
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Traditionally, the most applied methods for assessing the reproductive cycle in bivalves have been done 

through histological sectioning and squash preparations of gonads (Gosling, 2015). These methods are 

advantageous for determining the percentages of gonadal maturation stages and identifying stages of 

development, although they are time-consuming and rather subjective (Gosling, 2015). The somehow 

subjectivity when determining gametogenic stages is due to the coexistence of gametes in several 

developmental stages, leading macroscopic observations to errors (Tirado et al., 2002). Other methods 

quantifying the proportion of gonadal weight with respect to body mass (gonadosomatic index, GSI) 

(Santos et al., 2011; Cardoso et al., 2009a) have been used as a measure of reproductive effort, 

representing the main gametogenic events. An optimum approach to assess gametogenesis is the use of 

both qualitative, such as histology, and quantitative methods, such as GSI or oocyte size frequencies 

(Tirado et al., 2002; Gosling, 2003; Galimany et al., 2015). 

In the Adriatic Sea, histological techniques have been used to document the reproductive cycle of 

several commercial and non-commercial bivalves. Most of these species showed a pronounced seasonal 

reproductive cycle with spawning occurring between June and August in Modiolus barbatus (Mladineo 

et al., 2007), spring─summer in Glycymeris nummaria (Crnčević et al., 2013) and during summer in Arca 

noae (Peharda et al., 2006) and Venus verrucosa Linnaeus, 1758, which was prolonged up to November 

(Popović et al., 2013). Condition index (CI) has been recognized as a reliable indicator of reproductive 

state for some species such A. noae (Peharda et al., 2006) and V. verrucosa (Popović et al., 2013) 

showing the highest values during periods prior to spawning. Based on this index, spawning was 

suggested to occur also during summer in Mytilus galloprovincialis Lamarck, 1819 (Peharda et al., 2007) 

and Ruditapes decussatus (Linnaeus, 1758) (Jurić et al., 2012). The CI can additionally increase in 

localities next to aquaculture farms due to the input of organic material (Župan et al., 2014). Therefore, 

the correlation of CI with gonadal development should be carefully addressed since experimental data 

has proven that low CI values may not correspond to the release of gametes, and can be influenced by 

other factors such as temperature, food or salinity (Tirado et al., 2002). During periods when food 

availability is not abundant, the energy of the individual goes to reproductive effort in detriment of loss 

of reserve tissue as seen in R. decussatus whereas low values of CI may coincide with ripe stages 

(Martínez-Pita et al., 2011; Delgado & Pérez-Camacho, 2007). 

 

2.3.1. Reproduction in Callista chione 

The reproductive cycle of Callista chione has been previously described for Atlantic (Moura et al., 2008) 

and Mediterranean populations (Valli et al., 1983; Valli et al., 1994; Tirado et al., 2002; Metaxatos, 2004; 
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Galimany et al., 2015) driven by the commercial interest for this species. In the southern coast of Spain, 

C. chione was found to spawn all year round primarily from February to September with the observation 

of three spawning peaks (February–March, spring and summer) and with a main gamete release in May 

(Tirado et al., 2002). Likewise, in the Catalan littoral, the smooth clam was able to reproduce all year 

round with a main spawning peak in spring (Galimany et al., 2015). In the Gulf of Trieste, Valli et al. 

(1983; 1994) identified one main spawning period from February to September with a maximum 

spawning release between May and August. In Greece, the reproductive cycle was also reported all year 

round with a continuous spawning from spring to beginning of winter and two main peaks in May and 

December (Metaxatos, 2004). In an Atlantic population from southwest Portugal three spawning peaks 

(January–March, April–May and August–October) were shown, immediately followed by a total gonadal 

restitution, indicating the start of a new gametogenic cycle (Moura et al., 2008). 

The lack of a resting period has been claimed to be a strategy in the circalittoral, at depths around 10–20 

m, where environmental conditions and a constant presence of Chl a are more stable for a successful 

recruitment than in shallower waters (Valli et al., 1983; Valli et al., 1994). A prolonged spawning period 

is advantageous for the species to avoid the risk of reproducing just once by spreading the settlement of 

spat throughout the year (Moura et al., 2008; Tirado et al., 2002) and compensating the high larvae 

mortality (Valli et al., 1994). The amount of reserves is constantly mobilizing from somatic to gonad 

tissues, and even during the most intense period of gametogenesis, the mobilization of reserve energy 

may exceed the one assimilated (Valli et al., 1994). As a result of these studies, an equal sex-ratio was 

observed and a consensus in the strong link between temperature and gonad maturation was 

confirmed. Also, latitudinal or small-scale variations have seen to influence the responses in 

gametogenesis and spawning mainly due to temperature changes rather than to phytoplankton biomass 

oscillations. First studies of C. chione did not account for hermaphrodites (Moura et al., 2008) or 

declared them very rare (Valli et al., 1983). Galimany et al., (2015) recently reported hermaphroditism in 

C. chione, a state that according to Heller (1993) occurs in 9% of all bivalves. The size at age maturity, 

defined as the length at which 50% of the population is mature, has been estimated at 50.8 mm for the 

populations in southern Portugal (Moura et al., 2008) and 30.3 mm for the Catalan littoral (Galimany et 

al., 2015). It is interesting to note that mature individuals 30 mm length were observed in the former, 

and mature females with a length of 20.6 mm in the latter. In contrast, gonadal maturation at the age of 

two has been reported by looking at smear samples (Metaxatos, 2004). A positive correlation between 

CI and periods prior to spawning was seen by Moura et al., (2008). All these studies were conducted in 

just one population during one breeding season, and none have assessed the quantitative allocation of 

energy into reproduction considering, for instance, environmental factors. Since differences in the 

growth rates of two relatively nearby populations of C. chione have been previously described in the 
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eastern Adriatic coast (Ezgeta-Balić et al., 2011), this region appears as an ideal experimental scenario 

for studies on the effects of temperature on natural populations. 

 

2.3.2. Reproduction in Glycymeris sp. 

The reproductive cycles of Glycymeris bimaculata and G. pilosa have not been assessed to date but 

reproduction characteristics of other members of the Glycymeris genus have been studied. In G. 

glycymeris from southern Brittany (France), ripe individuals represented at least 70% of the population 

throughout the year (Lucas, 1965). In populations from the Calf of Man (UK), Morris (1978) mentioned 

that G. glycymeris specimens were able to spawn all year round. Based on this knowledge, 

Steingrimsson (1989) studied G. glycymeris populations from around the Isle of Man using stereological 

analyses, since conventional techniques would not provide an accurate estimation of gametogenesis in a 

species with continuous spawning. His results showed that spawning occurred at small scales and 

confirmed that individuals were in the mature stage all year, thus indicating that most energy in the 

organism is allocated to reproduction. Under stress conditions, individuals might overcome spawning at 

larger scales to reach a maximum reproductive output (Steingrimsson, 1989). Height at sexual maturity 

was estimated at 20 mm (Lucas, 1965; Steingrimsson, 1989), which represented 12─13 year old 

specimens in the Isle of Man populations but just 4 year old in St. Malo (France), probably associated 

with differences in shell growth rates as reported by Berthou et al., (1986). 

Another studied Glycymeris species is the Indian clam, Glycymeris gigantea (Reeve, 1843), from the Gulf 

of California (Mexico). The gonadal development for this species was studied bimonthly using common 

histological techniques and oocyte size frequencies (Villalejo-Fuerte et al., 1995). In this study, 

gametogenesis was shown to be most active from February to May, with the highest spawning peak in 

October, despite some degree of spawning being observed throughout the year. CI seemed to follow 

gametogenic activity, although it was not recommended as an indicator of reproduction due to the 

potential influence of changes in water content or nutritious mass in the soft tissue (Villalejo-Fuerte et 

al., 1995). On the other hand, a relationship between water temperature and main gamete release co-

occured with a decrease in temperature of nearly 10°C (Villalejo-Fuerte et al., 1995). 

The most recently studied glycymeridid is the cockle Glycymeris nummaria from Mali Ston Bay 

(southeastern Adriatic Sea). In this population, no differences in sex ratio were observed and a 

synchronous gonadal ripening took place between May─June, with one main annual spawning event 

(July─August) (Crnčević et al., 2013). For this species, CI generally followed gonad development and the 

highest mean gonad index (MGI) values were reported with increasing temperatures (May─July) while 



16 

 

the spawning peak coincided with the highest temperatures. Monthly mean mature oocytes of G. 

nummaria ranged from 9.2±2.8 µm to 41.9±23.7 µm with a maximum mature oocyte size around 80 µm 

(Crnčević et al., 2013) which is smaller than the one reported for G. gigantea (up to 150 µm) (Villalejo-

Fuerte et al., 1995). This could be likely influenced by differences in shell length since G. gigantea attain 

a length of up to 99 mm (Nicol, 1964) whereas G. nummaria can occasionally reach lengths of 70 mm 

(Poppe et al., 1993). However, Lucas (1965) found mature oocytes between 160─180 µm for oval 

oocytes, suggesting these variations to be caused by different methodological approaches when 

measuring oocyte sizes. Hermaphrodites were also reported in G. glycymeris and G. gigantea (Lucas, 

1965; Villalejo-Fuerte et al., 1995). 

 

2.4. Shell growth 

Bivalve shells, much like tree rings, are able to provide ultra high-resolution (tidal, daily, fortnightly, 

annual) records which allow a better understanding of species life history traits (Richardson, 2001). 

Bivalves can live in a wide biogeographic distribution ranging from poles to equator, from marine to 

freshwater ecosystems and from deep to shallow waters (Gosling, 2003). Consequently, the 

reconstruction of the physical and chemical environment during growth can be withdrawn from the 

shell imprint, for all these environments. Sclerochronology, firstly applied to study corals (Buddemeier 

et al., 1974), is successfully used in bivalves (Jones, 1980; Oschmann, 2009; Butler & Schöne, 2017) 

seeking to comprehend changes though an organism’s life and reconstructing past environmental 

conditions. Jones et al., (2007) defined sclerochronology as “the study of physical and chemical variation 

in the accretionary hard tissues of organisms, and the temporal context in which they formed (…) seeks 

to deduce organismal life history traits as well as to reconstruct records of environmental and climatic 

change through space and time”.  

The application of growth pattern analysis is wide, including biology, ecology, archaeology and 

paleoclimate research (Schöne et al., 2012). Although most bivalves live for less than 10 years some are 

extremely long-lived. The astonishing finding of an Arctica islandica (Linnaeus, 1767) specimen dated 

507 years as the longest lived non colonial animal (Butler et al., 2013) pointed out the important role of 

bivalves as potential paleoclimate archives. Uninterrupted climate reconstructions are the result of 

combining individual chronologies (cross-dating) of long-lived specimens (including fossils), known as 

master chronologies, allowing to extend the climate records beyond the lifetime of one organism 

(Marchitto et al., 2000; Schöne et al., 2003), covering centuries (Witbaard, 1996; Marchitto et al., 2000; 
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Butler et al., 2010; Schöne, 2003) to millennia (Reynolds et al., 2013; Wanamaker et al., 2012; Reynolds 

et al., 2017). 

Sclerochronological techniques can be applied at several precision levels to trace the physico-chemical 

properties of the environment e.g., temperature, salinity (Koike, 1980; Marsden & Pilkington, 1995), 

water quality (Mutvei et al., 1996; Ravera et al., 2007), food availability (Sato, 1997) or biological 

responses such as the reproductive cycle (Sato, 1995; Jones, 1980). These records can be extracted 

through the combination of variable growth rates and geochemical properties of the shell. The 

identification of growth lines, formed by a different rate of shell deposition material due to chemical 

and crystallographic properties (e.g. Jones, 1980), is a first step prior to measuring growth rates. Growth 

line formation is usually associated with a period of slow growth with high amounts of organic material 

relative to calcium carbonate (Schöne et al., 2012). The growth increments, considered as the area in 

between the lines, are studied in the outer and middle shell layer of cross-sectioned valves as a measure 

of time (Richardson, 2001). Some bivalves form daily growth patterns, especially evidenced in the 

youngest portions of the shell, e.g. Pecten maximus (Linnaeus, 1758) (Chauvaud et al., 1998; Chauvaud 

et al., 2005) or Tridacna spp (Watanabe & Oba, 1999; Sano et al., 2012) associated with circadian 

periodicity. In intertidal bivalves, shell growth usually stops under aerial exposition, thus, in semidiurnal 

tide habitats, two growth lines can be formed per day (Schöne et al., 2007; Ramón & Richardson, 1990). 

Traditionally, growth lines on the shell surface, which are used to age mollusks (e.g. Richardson, 2001 

and references therein), represent the periods of growth slowdown or cessation, most likely associated 

with colder (e.g. Jones, 1980; Richardson, 2001) or warmer (e.g. Hall et al., 1974) months of the year. 

Several mark-recapture experiments have confirmed the formation of annually growth lines (Mannino 

et al., 2008; Peterson et al., 1983; Gosling, 2003; Sejr et al., 2002) and in some species the season of 

growth line formation has been seen to vary with latitude (Chauvaud et al., 2012; Cardoso et al., 2013; 

Lord & Whitlatch, 2014). Annual growth lines are characterized by dark lines which occasionally, 

especially in short-lived bivalves, can be easily discerned by the naked eye. To ensure reliable 

measurements and better distinguish annual growth lines from disturbance lines (caused e.g. by storms, 

food scarcity, fishing pressure) (Broom & Mason, 1978; Peharda, Ezgeta-Balić, Radman, et al., 2012; 

Witbaard, 1996; Leontarakis & Richardson, 2005), generally less prominent sections require to be cross-

sectioned to analyze microgrowth bands (Richardson, 2001). 

Shell growth rates vary through ontogeny and in response to several factors (e.g. Schöne et al., 2003). 

The environment (temperature, salinity, food availability and photoperiod), physiology (reproduction) 

and endogenous rhythms (tides) influence shell growth rates (Schöne et al., 2012). Most likely, an 

interaction of all these influences defines shell growth, and the precise effect of a single factor on 
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bivalve’s growth is hard to quantify. Temperature has been recognized as the main driver of annual 

growth line formation (Jones et al., 1983; Bucci et al., 2009) which is dependent on species-specific 

temperature thresholds. Food availability and quality have also been reported to influence shell growth 

(Witbaard et al., 2001; Turekian et al., 1982). Furthermore, the reproductive cycle has also been 

associated with the growth line formation; as for instance in Mercenaria sp. (Castagna & Kraeuter, 

1977), Arctica islandica (Jones, 1980) or Phacosoma japonicum (Reeve, 1850) (Sato, 1995). Accordingly, 

the timings of shell growth/cessation are sensitive to spatial variations (i.e. habitats) which may strongly 

increase or reduce shell biomineralization in a same species. Thus, studies on a single species in one 

habitat need to be interpreted with caution since they cannot be extrapolated. 

To reveal microgrowth patterns shells are sectioned from the umbo to the shell margin along the axis of 

maximum growth, embedded in resin, and a series of grinding, polishing and etching is done prior to 

prepare acetate peel replicas of the shell (Richardson et al., 1979). Fluorescence spectroscopy is used as 

an alternative, with comparable results from acetate peel methods (Wanamaker et al., 2009). 

Sclerochemistry is used to combine shell growth patterns with geochemical analysis to use bivalve shells 

as paleoclimate recorders as high resolution environmental records. Stable isotopes (e.g. δ18O, δ13C) and 

trace element chemistry (Jacob et al., 2008) are used to unravel the environmental conditions in which 

shells were formed. The oxygen isotope is a proxy for temperature and a 1‰ change is considered to 

correspond to a temperature change of ~ 4.3°C (Grossman & Ku, 1986; Böhm et al., 2000). High δ18O 

values correspond to low temperatures, whereas low δ18O values to warmer periods. Some studies 

proved reliable increments of hourly to monthly resolved temperature, and bi-weekly to monthly 

δ18Owater and salinity (Hallmann et al., 2008). Species-specific relationships between shell growth and 

temperature need to be fully understood to use them as temperature proxies. The carbon isotope ratio 

(δ13C) in carbonate shell materials is influenced by metabolic factors and by thermodynamic conditions 

(Fry et al., 1984; Kalish, 1991). Since metabolism is influenced by temperature and food supply, the 

effect of temperature on δ18O is clearer than for δ13C. The analysis of stable isotopes has extensively 

been used to validate the seasonality in growth line deposition in other marine bivalves such as Pinna 

nobilis (Richardson et al., 2004), Arctica islandica (Schöne et al., 2004), Panopea abrupta (Conrad, 1849) 

(Goman et al., 2008), Scrobicularia plana (da Costa, 1778) (Santos et al., 2012), Ensis directus (Conrad, 

1843) (Cardoso et al., 2013) or Glycymeris bimaculata (Bušelić et al., 2015) among others. 

 

In the Adriatic Sea, the growth of some bivalves has been analyzed using the von Bertalanffy growth 

curve model (VBG). Overall, these studies have mainly focused on determining maximum longevities, 

growth rate estimates and timing of growth band formation but few included environmental or 
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biological variables in their analyses. Most of the studied bivalves are short-lived and the formation of 

annual growth rings varied among species. A longevity of over 16 years with a summer-autumn growth 

band (Peharda et al., 2002) has been estimated in Arca noae, which can extraordinarily grow up to the 

age of 25 years in non-exploited populations (Puljas et al., 2015). Growth bands were also formed during 

summer in the short-lived Venus verrucosa which reached 14 years of age (Peharda et al., 2013), 

Acanthocardia tuberculata (Linnaeus, 1758) which reached up to 11 years (Peharda et al., 2012) and 

Modiolus barbatus (Peharda et al., 2007) which reached 14 years of age. In V. verrucosa, growth band 

formation coincided with the timing of spawning and periods with minimum Chl a concentration. Alike, 

periods of fastest growth in  Mytilus galloprovincialis were related to periods with higher concentration 

of Chl a (Peharda et al., 2007). The age of the oldest analyzed Mediterranean scallop Pecten jacobaeus 

(Linnaeus, 1758) was estimated at 13 years (Peharda et al., 2003). The short-lived Ruditapes decussatus 

formed annual growth bands in February during a period of slow growth and reached an age of up to 6 

years (Jurić et al., 2012). Differences in growth rates between locations have evidenced a faster growth 

rate in Cetina than in Pag for A. tuberculata and C. chione (Peharda et al., 2012; Ezgeta-Balić et al., 

2011). The combination of VBG and stable isotope analysis (δ18O and δ13C) was performed in the 

European date mussel Lithophaga lithophaga (Linnaeus, 1758), with an estimated longevity of 54 years, 

showing its potential as a geochemical sclerochronological archive (Peharda et al., 2015). 

 

2.4.1. Shell growth in Callista chione 

Age determination studies in C. chione by both external and internal rings have provided similar results 

during the early years of life (up to the age of 10 years). After this period, the growth rate decreased and 

the identification of rings close to the shell margin was unclear, especially when shells were damaged or 

presented other disturbance marks (Leontarakis et al., 2005). Therefore, acetate peel replicas have 

proven to be a good technique for age determination of this species (Leontarakis et al., 2005; Moura et 

al., 2009). Callista chione presents a predominantly aragonitic composition, although specimens 

collected in the Gulf of Trieste have shown a 10% of calcite (Keller et al., 2002). Daily or nearly daily 

growth increments have been observed in young shells (Hall et al., 1974). Specimens can attain a length 

of 90 mm and live for > 40 years in the Adriatic Sea (Ezgeta-Balić et al., 2011) and in the English Channel 

(Forster, 1981), although most common documented maximum ages are 16─17 years (Leontarakis et al., 

2005; Moura et al., 2009; Metaxatos, 2004; Hall et al., 1974). 

Environmental variables such as the influence of waves have proven to distress shell growth rate, 

showing lower rates and shorter longevity when measured at a wave-exposed site in comparison with a 

less wave-exposed one (Leontarakis et al., 2005). Up to date, just one study looked at the isotopic 
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composition (oxygen and carbon isotopes) from shell carbonates in C. chione (Keller et al., 2002) to age 

shells, estimating a 75 mm length individual to be 12 years old. These analyses also confirmed a fast 

deposition occurring during the first 5 years of life followed by a progressively marked decrease with 

increasing age (Keller et al., 2002; Ezgeta-Balić et al., 2011; Richardson, 2001; Moura et al., 2009). The 

deposition of growth lines during the summer months, coinciding with maximum peaks of temperature, 

has been agreed by several authors: from July up to October (Hall et al., 1974), during summer months 

(Keller et al., 2002) and from August until September (Ezgeta-Balić et al., 2011). The former related the 

shortest growth with the spawning time of the species (set in April), when temperature and food are 

optimum, speculating that growth deposition could be related to the beginning of oogenesis and 

spermatogenesis. In contrast, Moura et al., (2009) observed the deposition of growth lines between 

September and January coinciding with the slowest growth whereas the fastest growth took place 

during spring and summer. The latter study related the lower growth due to a mobilization of reserves 

for recovery of gonad stages, since gametogenesis in southwest Portugal occurred in November (Moura 

et al., 2008). In the eastern Adriatic Sea, several populations of C. chione were measured for age 

structure and growth rates, showing the fastest shell growth in the population from Cetina, which 

reached 70 mm at age of 7 years (Ezgeta-Balić et al., 2011). On the other hand, Kaštela and Pag Bays had 

lower growth rates, and these were similar to those reported in the southwest of Portugal (Moura et al., 

2009). 

 

2.4.2. Shell growth in Glycymeris sp. 

Species of the Glycymeris genus have been recently used as high-resolution marine archives, 

reconstructing environmental conditions from modern Glycymeris glycymeris, G. bimaculata and G. 

pilosa (references below). Along with Arctica islandica, G. glycymeris is one of the most extended 

studied species for sclerochronology and so far its shells have been largely studied in the North Atlantic 

(Brocas et al., 2013; Reynolds et al., 2013; Royer et al., 2013; Ramsay et al., 2000). Due to the wide 

distribution of this genus, they arise as ideal candidates to provide uninterrupted records from decades 

up to several centuries, as seen for G. glycymeris (Schöne et al., 2013) from several settings. Growth 

increment widths have allowed the construction of dated chronologies from multidecadal to 

multicentennial time scales (Reynolds et al., 2013; Brocas et al., 2013). Annual growth lines in G. 

glycymeris from the North Atlantic are formed during winter, probably associated with minimum 

temperatures below the animal’s threshold for growth (Royer et al., 2013; Berthou et al., 1986). In the 

Mediterranean Sea, the first robust master chronology was developed for G. bimaculata in Pag Bay 

(Bušelić et al., 2015). Annual growth lines were deposited at the beginning of spring and inter-annual 
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differences between growth increments were linked to variations in seawater temperature and salinity. 

The maximal longevity of analyzed shells in this study was over 60 years, indicating that growth rates are 

probably faster than its congeneric species G. glycymeris which can reach up to 200 years with a smaller 

size (Reynolds et al., 2013). Recently, G. pilosa was assessed as a potential environmental indicator in 

the Mediterranean, by studying a population from Pašman Channel (Peharda et al., 2016). The oldest 

analyzed shells were 69 years old and a master chronology spanned from 1969 to 2013. The relationship 

with environmental variables was somehow complex due to the highly variable conditions, common for 

shallow waters, but precipitation was positively correlated with growth, apparently indirectly associated 

with the supply of food to the bivalves (Peharda et al., 2016). The smallest of the glycymeridids in the 

Adriatic, G. nummaria was studied in Mali Ston Bay and a narrow growth line formation was observed 

after February (Peharda et al., 2012). In this population, a short longevity of up to 20 years was 

estimated showing little potential for long term chronology construction. Although the longevity of G. 

bimaculata and G. pilosa is not comparable to that of A. islandica or G. glycymeris, they are good targets 

for sclerochronology and have a great potential to be used as key archives of high-resolution 

paleoceanographic variability in the Mediterranean and also in Atlantic areas. Since previous studies 

found differences in longevity of populations of G. glycymeris related to latitudinal gradients 

(Steingrimsson, 1989; Kaiser et al., 2000; Royer et al., 2013), further studies in other regions are highly 

recommended to corroborate this trend. Even ancient Glycymeris from Oligocene fossil records (G. 

planicostalis) have been analyzed, estimating shell growth to occur during winter and summer and an 

annual growth line deposition during late summer/early fall (Walliser et al., 2015). Overall, the timing 

and rate of shell growth can vary not only among congeneric species but also within a species (Jones & 

Quitmyer, 1996; Bušelić et al., 2015). 
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3. MATERIAL AND METHODS 

 

3.1. Study area 

The Adriatic Sea is considered a semi-enclosed sea within the Mediterranean basin, and it is 

considerably influenced by freshwater influxes derived from riverine and karstic flows characteristic for 

the eastern coast (Bonacci, 2015). Three sites located in the eastern part of the middle Adriatic Sea (Fig. 

3.1, Table 3.1) were selected based on their different environmental settings and differences in bivalve 

growth recorded in earlier studies (Ezgeta-Balić et al., 2011). Pag Bay is located on the island of Pag with 

relatively well defined marine conditions, Cetina site (in Duće) is close to the mouth of the Cetina River 

and most likely influenced by fluvial inputs since its location on the direction of the river plume, and 

Pašman Channel is a marine exposed area with high current amplitudes (up to 10 cm/s) located in a 

traditionally important bivalve harvesting area. All locations are shallow coastal sites and samples were 

collected within a range of 1 to 5 m water depth. Previous studies on the distribution of benthic species 

(Peharda et al., 2010) identified these sites with sufficient population sizes for conducting a temporal 

collection based on monthly sampling, ensuring the collection of specimens throughout the study 

period.  

 

Figure 3.1. Location of study sites 
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Table 3.1. Geographic coordinates and description of study sites 

  Pag Cetina Pašman 

Location 
44˚27’42’’ N 
15˚01’36’’E 

43˚26’13’’ N  
16˚41’14’’ E 

43˚56’49’’ N 
 15˚23’18” E 

Depth  3─6 m 2─4 m 1─3 m 

Sediment type gravelly sand gravelly sand gravelly sand 

 

3.2. Environmental variables 

3.2.1. Temperature, salinity and precipitation 

Seawater temperature was measured hourly by data loggers (Tinytag, Gemini®) deployed at each 

location during the entire sampling period. Monthly salinity data was recorded in situ with an YSB probe. 

Monthly precipitation data for Pag, Cetina (Split) and Pašman (Biograd) meteorological stations were 

obtained from the Meteorological and Hydrological Service of the Republic of Croatia. 

 

3.2.2. Characterization of water column and sediment 

Seawater samples were collected ~0.5 m above the seafloor by SCUBA and skin diving using a Niskin 

bottle (between 10─20 L), transported in dark containers to keep the SPM from light and vacuum 

filtered in the laboratory. Prior to filtration water containers were gently agitated to homogenize 

seawater and filters were rinsed with distilled water. Pre-weighed nitrocellulose filters (WhatmanTM, 47 

mm diameter, 0.45 µm mesh size) were used to measure bulk suspended particulate matter and 

biogenic silica content (BSi) while pre-combusted (450°C, 6 h) and pre-weighted glass fiber filters 

(WhatmanTM GF/F, 25 mm diameter, 0.7 µm mesh size) were used to measure elemental composition 

and ratios of %C and %N, and their isotopic composition (δ13C and δ15N; see 3.3.1), fatty acids and lipid 

concentrations (see 3.3.2). The concentration of SPM was determined on the dry mass of the total 

suspended particles retained per unit of volume after drying (60°C, 24 h) (expressed as mg/L). SPM 

filters were also used for BSi content analysis following a sequential alkaline digestion (2 to 5 h) with 

NaCO3 to distinguish between biogenic and lithogenic silica sources (Mortlock & Froelich, 1989; 

DeMaster, 1991). Around 1 L of seawater per replicate was filtered for Chlorophyll a analyses through 

glass fiber filters which were folded, wrapped in aluminum foil, frozen and stored at -20°C. Chl a was 

extracted in 90% acetone (Strickland & Parsons, 1972) and measured in a Turner Systems (Sunnyvale, 

CA) Trilogy fluorometer. Triplicate samples were conducted for all chemical analysis. Additionally, 

satellite-derived Chl a data was extracted from the MODIS-Aqua Sensor provided by the EU Copernicus 

Marine Service (CMEMS). 
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Surface sediment samples (ca. upper 2 cm) (Sed) were collected monthly by SCUBA diving using a plastic 

core and preserved at -20°C. Homogenized and ground samples were used for %C, %N, BSi, SI (see 3.3.1) 

and FA (see 3.3.2) analyses, Chl a samples were extracted in 90% acetone (4°C, 12 h ) (Lorenzen & 

Jeffrey, 1978), BSi content was measured following the procedure for SPM, and total carbon (TC) was 

measured in a LECO Truspec CN-2000 analyzer. Inorganic carbon (IC) (expressed in dry weight %) was 

calculated by the difference between TC and OC content. Grain size was determined in a HORIBA 

LA950V2 laser scattering particle size distribution analyzer after removal of organic matter in a 20% 

hydrogen peroxide solution (Table 3.2). 

 

Table 3.2. Parameters measured in the different pools 

 SPM Sed DG 

Chl a      

BSi & total Si      

Granulometry     

%OC, %N, δ13C, δ15N        

%IC     

FA       

Lipids       

 

3.3. Feeding ecology 

Bivalve shells were collected by SCUBA and skin diving. Ideally 20 living individuals per species were 

collected, measured for biometric analysis and processed within 3 hours by sectioning the muscle and 

dissecting the digestive gland (DG) from each individual. Digestive gland was chosen due to a fast 

isotopic turnover in this tissue reflecting recent signatures (days to weeks) (e.g. Ezgeta-Balić et al., 

2012). Tissues from three specimens were pooled per each of three replicate samples. Each sample was 

stored at -20°C for subsequent analyses. 

 

3.3.1. Isotopic analysis 

Particulate organic carbon and nitrogen elemental and isotopic compositions were measured in SPM 

filters -dried at 50°C for 24 h-, 50 mg of Sed and 1 mg of DG. Sed and DG samples were freeze-dried and 

individually homogenized using an agate mortar and pestle. To remove carbonates, SPM filters and DG 

samples had a 6 h exposure to HCl fumes (Lorrain et al., 2003) while Sed samples were exposed to HCl 

fumes for 24 h (due to the high content of carbonates) prior to isotopic analyses. Further, to avoid 

effects of acidification in Sed (e.g. Walthert et al., 2010), non-acidified subsamples were used for the 
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analysis of δ15N. To eliminate residual HCl and water, all samples were ventilated overnight at room 

temperature and dried in a hotplate (50°C, 6 h). Filters were folded and placed into tin cups (12.5 mm x 

5 mm) whereas Sed and DG samples were placed into tin cups wrapped by silver cups to avoid losses 

due to tin corrosion (8 mm x 5 mm). Stable isotope ratios of carbon (13C/12C) and nitrogen (15N/14N), and 

elemental %C and %N analyses were conducted on a Carlo Erba Elemental Analyzer EA1108 coupled to 

an isotope-ratio mass spectrometer ThermoFinnigan MAT253 in the Unidade de Técnicas Instrumentais 

de Investigación, University of A Coruña (Spain). Results are expressed in standard unit notation (VPDB 

for the carbon and atmospheric air for the nitrogen): δX = ([R sample / R standard] – 1) x 1000, where X 

represents 13C or 15N, and R is the ratio of 13C/12C or 15N/14N, respectively. An acetanilide standard was 

used for the quantification of the amounts of %N and %C. Isotopic data are given in the conventional 

delta notation in units of parts per thousands (‰). Lipid content in tissues may affect δ13C values, where 

high lipid concentrations result in depleted 13C biasing the isotopic signal (DeNiro et al., 1978; Focken & 

Becker, 1998). However, previous studies in bivalves did not find this relationship (Lorrain et al., 2002; 

Ezgeta-Balić et al., 2014) therefore, lipid extraction was not conducted in the present study. A two-

source isotopic mixing model was used in MixSIAR package, a graphical user interface (GUI) built on R 

software (Parnell et al., 2010), that uses an algorithm based on Bayesian statistics to determine the 

probability distributions for proportional food source contribution to the mix diet of consumers 

(Semmens et al., 2013). This model accounts for uncertainty in isotopic values when estimating the 

contribution of sources in the diet due to the incorporation of diet-tissue discrimination factors. 

Discrimination factors of 0.5±0.13‰ for δ13C and 2.3±0.18‰ for δ15N considered for benthic consumers 

(McCutchan et al., 2003; Alomar et al., 2015) were incorporated into the model. Despite the increasing 

number of studies for prey-predator fractionation values, there are no species-specific values for our 

target species; therefore, conventional fractionation values for benthic consumers can be applied as 

supported by Yokoyama et al., (2005). The Stable Isotope Bayesian Ellipses method in R (SIBER package) 

was used to investigate isotopic niches by examining the dispersion of δ13C and δ15N values. 

 

3.3.2. Fatty acid analysis 

SPM, Sed and DG samples were collected during one year period and freeze-dried prior to biochemical 

analyses. For total lipid analysis all samples were weighted (DG samples were blended) and later, a 

dichloromethane-methanol (DCM:MeOH) mixture (2:1) sonicated in a water bath at 30°C was added. 

After separation DCM phases were pooled and evaporated to dryness and weighed. Total lipids of 

digestive glands were re-dissolved in DCM and neutral lipids were separated according to Pernet et al., 

(2012). All extracts (total lipids of SPM and Sed and neutral lipids of DG) were saponified (1.2 M NaOH), 

acidified (6M HCl) and methylated (14% BF3 in methanol) then extracted in DCM. Fatty acid methyl 
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esters (FAMEs) were analyzed by Agilent gas–liquid chromatography (GLC) 6890 N GC System equipped 

with a 5973 Network Mass Selective Detector, capillary column (25 m x 0.3 mm x 0.25 µm; cross-linked 

5% phenylmethylsiloxane) and ultra-high purity helium as the carrier gas. The GLC setting was 

programmed column temperature rise from 145°C by 4°C min-1 up to 270°C at a constant column 

pressure of 2.17 kPa. Retention times, peak areas and mass spectra were recorded with Chemstation 

software. Bacterial FAME standard mix, FAMEs mix C18-C20, polyunsaturated fatty acids standards 

(PUFA1 and PUFA3), cod liver oil and various individual pure standards of FAME were used. 

FAs were reported as percentages of the total fatty acids (% TFA, mean ± SD) and grouped as saturated 

(SFA), monounsaturated (MUFA), PUFA, and detrital fatty acids (DETRITAL; 

15:0+15iso+15anteiso+17:0+17iso+17anteiso+18:1(n-7); Najdek et al., 2002; Mayzaud et al., 1989). 

Unsaturation degree (UND) was calculated according to Pirini et al., (2007). The ratio of C16:1/C16:0 (> 

1) and the relative dominance of C20:5 (n-3) (EPA) and C14:0 are considered as diatom indicators 

(Ackman et al., 1968; Kharlamenko et al., 1995; Léveillé et al., 1997) while the ratio of C22:6 (n-3)/C20:5 

(n-3) (DHA/EPA) (>1.0), DHA, 16:0 and C16:1/C16:0 (< 1) are predominant in dinoflagellates (Dalsgaard 

et al., 2003; Budge et al., 1998). DHA, EPA and ARA (20:4 (n-6)) are considered Essential FA (EFA; 

Alkanani et al., 2007) and are transferred to microzooplankton (Ventrella et al., 2008). Herbivorous 

calanoid copepod markers are C20:1 and C22:1 (Falk-Petersen et al., 1987). A marker of carnivory 

indicator of zooplankton (Sargent et al., 1988) and detrital matter (Fahl et al., 1993) is C18:1(n-9). 

 

3.4. Reproduction 

Up to 40 standard-sized sexually mature individuals of target species per location were collected 

monthly by SCUBA and skin diving between June 2014 and October 2015 and transported alive to the 

laboratory. 

3.4.1. Qualitative: Histological analysis of gonad tissue 

Shell length (anterior-posterior axis), height (umbo-margin axis) and width (dorsal-ventral axis) were 

measured for each individual to the nearest 0.1 mm using Vernier calipers. Within three hours of 

collection, bivalves were sectioned, a piece of gonad tissue dissected, fixed in 4% formaldehyde and 

stored for later laboratory analysis. The tissue processing was conducted in the laboratory by 

dehydration in increasing concentrations of ethanol (70%, 80%, 96% and 100%) and clearing with a 

xylene substitute (Bioclear, Biognost). Following, the tissue samples were embedded in paraffin 

(Histowax, Leica), sectioned on a microtome at 5 μm and stained in hematoxylin and eosin. These 

histological sections were examined at 100x and 400x magnification using a Zeiss Axio Lab.A1 

microscope, sexually identified and assigned to a descriptive gonad developmental stage. Stages were 
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adopted and modified from Valli et al., (1984) and Galimany et al., (2015), and described as early active 

(3), late development (4), ripe (5), spawning (2) and spent/inactive stage (1). Gonadal maturation stages 

were determined based on the size of gonadal acini, presence of interstitial tissue and density and 

prevailing stage of germ cells, and ranged from 1 to 5 for both sexes. When clams presented 

intermediate phases between two described stages, the one dominating the greatest part of the gonads 

was assigned. A detailed description of each stage is given in Table 3.3.  

Table 3.3. Description of main developmental stages described for Callista chione (adopted from Valli et al., 1984). 

Developmental stage Females Males 

Early active First recognizable stage of recovery 

after spawning. Oogonia and primary 

oocytes attached to the follicle walls. 

Follicles becoming larger and denser, 

connective tissue between them.  

Spermatogonia and primary 

spermatocytes developing, 

partially lining the acini walls. 

Late development Secondary oocytes developing larger 

and thicker, still attached to the 

follicle wall. Starting formation of 

pedunculated oocytes. Follicles larger 

and closer together. 

Spermatocytes and spermatids 

partially lining the acini walls. 

Starting to be radially arranged. 

Ripe Acini filled with pedunculated oocytes. 

Follicles are crowded with mature 

(free) oocytes. Follicle walls are very 

thin and connective tissue is reduced.  

Spermatocytes and spermatids 

predominate. Follicles are packed 

with mature spermatozoa to 

periphery and organized into a 

rosette-like formation. 

Spawning Gonads retain differentiation. First 

signs of partial or total emission of 

gametes by evidence of empty zones. 

Areas with unspawned follicles and 

ripe oocytes. Increase presence of 

phagocytes. Scarce interfollicular 

connective and muscle tissues. 

Majority of the follicles show 

signs of partial or total emission 

of gametes. Some spermatozoa 

arranged in spiral.  

Spent/Inactive Mature oocytes considerably 

shrunken in volume. High abundance 

of haemocytes attacking unspawned 

gametes for gonadial regression (lysis 

and resorption). Reorganization of 

follicles with broken acini walls; 

occasionally, the absence of gametes 

unables sex determination.  

Some residual spermatozoa 

remain. Follicles collapsed with 

broken acini walls. High 

abundance of haemocytes for 

gonadial regression; occasionally, 

the absence of gametes unables 

sex determination. 
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A mean gonad index (MGI) was calculated separately for males and females by multiplying the number 

of individuals from each developmental stage by the numerical ranking assigned to that stage and 

dividing it by the total number of individuals in each sampling month (Gosling, 2003). 

Histological analysis in Callista chione was performed on samples collected between July 2014 and July 

2015. The collection of 20 individuals was not possible in each month and fewer individuals were 

collected in Pag in January 2015 (n=10), and in Cetina in November 2014 (n=15), December 2014 (n=10) 

and March 2015 (n=15). A total of 4 individuals from Pag and 3 individuals from Cetina were excluded 

from the stage determination due to artifacts with histological proceeding. 

Glycymeris bimaculata samples were collected between July 2014 and August 2015. The collection of 20 

individuals per month was performed at both Pag and Cetina. A total of 11 individuals were excluded 

from the stage determination in both Pag and Cetina due to artifacts with histological processing and 

infection. 

Glycymeris pilosa samples were collected between September 2014 and August 2015 only at Pašman 

sampling site. This species was very rare at Pag and Cetina sampling sites, and Pašman was selected as a 

location with sufficient number of samples for this analysis. The collection of 20 individuals was not 

possible in each month and fewer individuals were collected in October 2014 (n=19), November 2014 

(n=13) and December 2014 (n=19). A total of 21 individuals were excluded from the stage determination 

due to artifacts with histological processing and infection. 

 

3.4.2. Quantitative: Gonadosomatic Index 

Twenty monthly collected specimens were used to determine the gonad investment and to corroborate 

the main changes in the gametogenic cycle by following the seasonal changes in gonadal tissue between 

July 2014 and October 2015. After collection, samples were rapidly sorted out, stored at 5°C and 

processed within 24 h of collection. Analysis of GSI index of Callista chione was performed for samples 

collected from Pag and Cetina sampling sites. The collection of 20 individuals per month was not 

possible in Cetina in November 2014 (n=10) and May 2015 (n=19), and in Pag in January (n=15), 

September (n=7) and October (none) of 2015. A total of 591 individuals were processed for this analysis 

and 5 (0.85%) were discarded due to accidental handling. In Glycymeris bimaculata GSI index was 

performed in a total of 320 individuals only in Pag, due to smaller population of this species at Cetina 

sampling site.  

Prior to dissection, morphometric measurements on each individual were taken for shell length, height 

and width to the nearest 0.1 mm with Vernier calipers and weighted, when dry, to the nearest 0.01 g. 

Bivalves were opened and gonads were carefully separated from the somatic tissue, and following, both 
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parts were placed in previously weighed porcelain dishes. Inorganic material, i.e. sand, was easily 

removable since it was accumulated in "sack-like" assemblages, thus, determination of just the dry mass 

was adequate. Samples were dried in an oven at 60°C for 48 h and weighed to get the estimated 

Somatic Mass Index (SMI) and Gonadal Mass Index (GMI). These indices were calculated as the dry 

weight of each part (soma and gonads) divided by the cubic shell dimensions expressed as mg/cm3. To 

determine the relative investment in reproduction, the gonadosomatic index (GSI) was calculated as the 

gonadal dry mass (g) divided by the total body dry mass (g). Additionally, a Body Mass Index (BMI), 

determined as the sum of SMI and GMI, was used as a measure of body condition index. 

Complementary, the reproductive output was analyzed as the percentage of gametes released into the 

environment and fecundity as the differential in gonadal mass before and after spawning, an indication 

of the potential capability of an organism to produce reproductive units. 

 

3.5. Growth 

3.5.1. Micromilling on the shell surface of Callista chione 

Shells of live collected young Calllista chione individuals from Pag and Cetina were analyzed for their 

shell microgrowth patterns using the surface micromilling method. Adult individuals of C. chione were 

not of use since they deposit shell material forming concentric lines, which added to the targeted short 

and narrow growth increments, would result in time-averaging and low sampling resolution. Three 

shells from each site were used for this analysis and based on shell lengths and shell microgrowth 

patterns investigated on the right valve they were all sexually mature. Analyzed shells from Pag were 

collected in June 2015, October 2015, and June 2016, respectively, while all analyzed shells from Cetina 

were collected in October 2015 and their age was identified by counting growth bands from shell cross-

sections (Fig. 3.2). Shells from Pag had a length of 45.2 mm (AC1), 47.8 mm (AC2) and 36.4 mm (AC3) 

and shell lengths from Cetina were 53.9 mm (CC1), 52.7 mm (CC2) and 50.6 mm (CC3).  

 

Figure 3.2. Cross-section of Callista chione CC2 specimen (length: 52.7 mm). Black rectangles indicate annually 

formed growth bands.  
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Shell powder (50 – 120 µg per sample) for isotope analysis was obtained by micromilling discrete and 

shallow sample swaths from the outer shell surface along the axis of maximum growth (Fig. 3.3), 

covering the last two years of life. Sampling was performed with a Dremel® Fortiflex drill equipped with 

a 0.3 mm cylindrical, diamond-coated bit (Komet/Gebr. Brasseler GmbH and Co. KG, model no. 

835104010) which was coupled to a stereomicroscope equipped with reflective light (Olympus Europe 

Highlight 3100). Prior to sampling, the periostracum was physically removed. The distance between 

individual sample swaths was measured with the software ImageJ 1.48v. Each sample was then placed 

in temporal context (to the nearest month) as described in section 2.4.  

Carbonate powder samples were reacted with 100% phosphoric acid in He-flushed borosilicate 

exetainers at 72°C. The liberated CO2 gas was measured with a ThermoFisher MAT 253 gas source 

isotope ratio mass spectrometer in continuous flow mode coupled to a GasBench II. Analyses were 

conducted at the Institute of Geosciences of the University of Mainz. Stable oxygen and carbon isotope 

data are reported in δ-notation and given as parts per mil (‰) relative to the VPDB standard. To 

calibrate the samples, an in-house Carrara marble was used (δ18O = -1.91 ‰; δ13C = 2.01 ‰) that was 

calibrated against NBS-19. Internal precision (1σ) and accuracy (1σ) were better than 0.07 ‰ for both 

isotopes. 

The majority of bivalves form shells in oxygen isotopic equilibrium with ambient water (Weidman & 

Jones, 1994; Marchitto et al., 2000). It is reasonable to assume that the same applies to the sampled 

aragonitic (tested with Feigl solution) shells. If so, the δ18Oshell data can be used to compute ambient 

temperature during growth using the paleothermometry equation of Grossman and Ku (1986) (1) with a 

scale correction of -0.27 ‰ (Dettman et al. 1999). Accordingly, to enhance temperature reconstructions 

from δ18Oshell values, δ18Owater in seawater was measured. Salinity at the sample localities ranged from 

freshwater (derived from estuarine and underwater springs) to fully marine seawater. δ18Owater 

measurements were also completed at the Institute of Geosciences of the University of Mainz using the 

equilibration method with CO2. Exetainers were flushed with a mixture of 0.3 vol% CO2 in helium and 

loaded with 0.5 ml of water sample. A total of 30 samples were collected between August 2014 and July 

2015, at different sites within a ranging salinity gradient from freshwater to open seawater areas. 

Samples were equilibrated at 25°C for 24 hours. For calibration we used GISP2, SMOW2 and SLAP2 

standards. Average internal precision was better than 0.1 ‰. δ18Owater values were calculated against 

the Vienna Standard Mean Ocean Water (VSMOW). A salinity-isotope relationship (mixing line) was 

characterized from all these measurements allowing to estimate seawater properties during the 

sampling period to assign better δ18Owater values. To determine the variability of temperatures on 
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seasonal to interannual time scales we applied the mixing line equation (2) developed for the studied 

Adriatic Sea region. 

Tδ18O (°C) = 20.60 − 4.34 * (δ18Oshell − (δ18Owater −0.27))  (1) 

δ18Owater = 0.23 * salinity − 7.54     (2) 

Monthly δ18Owater values were then estimated using in situ measured monthly salinity values, and used 

to calculate monthly modeled δ18Oshell values. The highest δ18Oshell value was assumed to record the 

coldest period from the shell’s growth whereas the lowest value was related to the warmest period, 

thus, data was arranged by using these extreme values as anchor points and aligned to the δ18Oshell curve 

by adjusting the time axis. The temporal alignment allowed placing each δ18Oshell value, that is, shell 

portion, in a calendar time. A δ18Oshell derived-temperature curve was computed using equation 1 and 

data was re-arranged along the time axis to obtain the best fit with high resolution instrumental 

seawater temperatures.  

 

Figure 3.3. Illustration of the micromilled shell portion of the bivalve Callista chione (specimen CC2). Middle and 

rightmost figure show sample swaths. 

 

3.5.2. Micromilling in the cross-sectioned valve of Glycymeris bimaculata 

Shells from live collected individuals of G. bimaculata from Pag and Cetina were analyzed for their shell 

microgrowth patterns. Two adult shells from Pag (AB1 and AB3) and three adult shells from Cetina (CB1, 

CB2 and CB3) were used for this analysis. Shells from Pag had a length of 76.2 mm (AB1) and 84.4 mm 

(AB3) and shell lengths from Cetina were 66.4 mm (CB1), 75.0 mm (CB2) and 72.9 mm (CB3). All 

analyzed individuals were collected in October 2015. 

One valve of each specimen was mounted on a Plexiglass cube with Epofix. A metal epoxy resin (WIKO 

Flüssigmetall) was used to embed the shells along the axis of maximum growth to avoid shell fracturing 

during cutting. Two 3 mm thin sections per specimen were cut perpendicular to the growth lines using a 

low-speed precision saw (Buehler Isomet 1000) equipped with a 0.4 mm thick diamond coated wafering 
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blade. Each thin section was mounted on glass slides with metal epoxy resin, ground on a series of wet 

silicon carbide papers (320, 800, 1200 grit), polished using 1 µm Al2O3 powder and ultrasonically rinsed 

in deionized water for few minutes. Micromilling was performed on one mounted thin section per 

specimen from the margin up to the last two years of growth. A Dremell® Fortiflex drill equipped with a 

1 mm cylindrical, diamond-coated bit (Komet/Gebr. Brasseler GmbH and Co. KG, model no. H52104003) 

coupled to a stereomicroscope was used at the Geosciences Institute in Mainz University. Prior to 

analysis, the outer resin layer following the shell rim was carefully removed. Between 37–60 samples 

weighing between 50 and 120 µm each were continuously collected per individual after approximately 

covering the last 1.5 years of growth (Fig. 3.4). Analysis followed the same procedure as described in 

section 3.5.1.  

 

Figure 3.4. Resulting 3 mm thin section of Glycymeris bimaculata (a). Orange rectangle represents the ventral 

margin at which samples were collected. Detail of the shell margin before (b) and after (c) micromilling. Scales at 1 

cm (a) and 1 mm (b,c). 

The high-resolution δ18Oshell values from cross-sections of Glycymeris bimaculata were fit following a 

polynomial function equation prior to the temporal alignment. The best fit minimizes differences 

between measured and modeled values. Following the same approach than in C. chione, high resolution 

instrumental seawater temperature were cross-dated to the δ18Oshell derived-temperature curve, and 

these were re-arranged along the time axis to obtain the best fit.  

The other thin section left from each specimen was used for their age determination. Following the 

previous mentioned steps (grinding and polishing) thin sections were immersed for ca. 20–40 min under 

constant stirring in Mutvei’s solution (Schöne et al., 2005). The main component of this staining solution 
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is Alcian blue, which stains mucopolysaccharides and glucosamids. This treatment facilitates the ageing 

of specimens since it stains the carbonate material from the shell enhancing growth lines. Following 

staining, cross-sections were digitized with a Canon EOS 550D digital camera attached to a Wild 

Heerbrugg M8 stereomicroscope equipped with a double spotlight head illumination (Schott VisiLED MC 

1000). 

Since the period of growth line formation was hard to achieve based on adult specimens of G. 

bimaculata, two juvenile shells were sampled by surface drilling, aiming to place the approximate period 

of growth line formation. Shells were collected in Pag in April 2015 and had a length of 28.5 mm (AB68) 

and 28.6 mm (AB69). A 0.3 mm drill bit was used to collect samples through consecutive holes from 

margin inwards. 

In addition, to get an estimate of metabolic carbon (CM) incorporation inshell material, water samples 

were also measured during 4 months to get δ13CDIC. Water samples were collected in the same glass vials 

and 200 µL of a CuSO4 solution (stock solution 25.6 g CuSO4*5H2O 100 mL-1) were injected to inhibit 

biological activity following Taipale & Sonninen, (2009). Glass vials could not be Helium fluxed due to 

logistical constraints and caps were sealed with Parafilm. The mixing line equation from McConnaughey 

et al., (1997) and rewritten by Gillikin et al., (2009) was used:  

CM = δ13Cshell – εshell-HCO3- - δ13CDIC)/( δ13CM – δ13CDIC) (3) 

Where εshell-HCO3- is the fractionation factor between aragonite and bicarbonate (2.7‰ according to 

Romanek et al., 1992) and δ13CM is that of metabolic carbon.  

 

3.6. Statistical analysis 

3.6.1. Environmental variables 

Pearson correlation coefficients were used for testing relationships in temperature among each of the 

study sites. 

 

3.6.2. Feeding ecology 

3.6.2.1. Environmental variables 

Two-way ANOVAs were used to test the effect of site (2 levels) and month (17 levels) in SPM, Chl a, BSi 

and lipids. A t-test was done for BSi in the sediment. Statistical assumptions for normality (Shapiro test) 

and homoscedasticity (Levene’s test) were confirmed prior to all analyses. 
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3.6.2.2. Stable isotopes 

Two-way ANOVAs were used to assess the effect of site and month on isotopic and C:N molar ratios in 

food sources and consumers. The isotopic niche overlap was tested with SIBER and SIAR packages in R 

(Jackson et al., 2011; Parnell et al., 2010). A Standard Ellipse Area (SEA), which is to bivariate data as SD 

is to univariate data, was applied to measure the isotopic niche width using Bayesian inference. SEAs are 

an alternative to Convex Hull methods since the ellipses are unbiased with respect to sample size and 

their estimation allows robust comparisons between data sets (Jackson et al., 2011). SEA values were 

corrected for small sample size (SEAC) containing 95% of the data, and Bayesian estimates (SEAB) were 

estimated as a measure to trophic width between species-sites. Analyses were performed in R v3.1.3 (R 

Core Team 2015). 

 

3.6.2.3. Fatty acids 

Analyses of similarities (ANOSIM) were performed in all detected FA profiles in SPM and Sed to 

determine resemblance among sampling periods and sites, and among consumer groups across 

sampling periods: PC-CC, PG-CG, PG-PC and CG-CC. This coding refers to Callista chione from Pag (PC) 

and Cetina (CC) and to Glycymeris bimaculata from Pag (PG) and Cetina (CG). All replicated data were 

used and log(x+1) transformed to improve normality prior to analysis. Results based on a global R 

statistic and p-value were reported. Non-metric multidimensional scaling (nMDS) and a Bray-Curtis 

similarity matrix were used to visualize the temporal compositional differences of all detected monthly 

mean FA profiles in each pool with respect to site. Similarity percentage analysis (SIMPER) and principal 

component analysis (PCA) were applied to identify the main contributors of dissimilarities in the FA 

profiles between sites in each pool. SIBER was also used to analyze feeding niche overlap using the x and 

y coordinates of the nMDS analysis of FA profiles of consumer groups following Antonio and Richoux 

(2014). SIBER analyses were performed using R v3.2.3 (Jackson et al., 2011; R Core Team, 2015) and 

multivariate analysis (ANOSIM, nMDS, SIMPER and PCA) using PAST 3.0 (Hammer et al., 2001). 

 

3.6.3. Reproduction 

For sex-ratio analysis, a chi-square test was applied considering an expected ratio of 1:1. The Levene's 

test was used to check for homogeneity of variances prior to any ANOVA or ANCOVA tests and normality 

of residuals was assessed by the Shapiro test. A Mann-Whitney test was applied to BMI and GSI data to 

test for differences between sites. A two-way ANOVA was performed to test for differences in between 

sex and shell length along the sampled period and also to test the seasonality between GSI and BMI 

between populations. These values were squared root transformed to obtain normality and used to test 

for these indices. To test for sex differences in MGI, the synchronicity between GSI and BMI, and the 
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influence of temperature on BMI and GSI, linear regression analysis using Pearson's correlation were 

done for each site. Differences in gonadal mass and GSI during months prior to spawning between sites 

were tested using a one-way ANCOVA controlling for shell length. All statistical analyses were carried 

out using Rv3.2.3 (R Core Team, 2015). 

 

3.6.4. Growth 

To quantitatively calculate shell accretion, shell growth rates were calculated in % based on one annual 

cycle. With increasing ontogenetic age, growth rate (and variance) decreases. To compare seasonal 

growth rates of years formed during different ontogenetic stage, such age-related growth trends need 

to be removed. This is accomplished by estimating the growth trend with an appropriate function (for 

example, a linear function) and removing the age trend from the growth increment time-series by 

dividing the observed increment width at each time interval by the predicted shell growth. The average 

of the resulting growth index chronology will equal 1. Oxygen data from surface micromilling of Callista 

chione, was combined with measured distances between each growth record from shell margin 

(described in 3.5.1). 

 

Pearson correlations were calculated to observe relationships between δ13Cshell and δ18Oshell 

values. Furthermore, a set of environmental and biological variables, including temperature (T), salinity 

(S), body mass index (BMI), gonadosomatic index (GSI), precipitation (Prec), δ13CSPM (δ13C) and C:NSPM 

molar ratio (C:N) were compared (Pearson correlation) to monthly shell growth indices (GR). Statistics 

were calculated using R (R Core Team, 2015) and transformations were applied when needed.  
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4. RESULTS 

 

4.1. Environmental variability 

The mean monthly temperature values showed a clear seasonal trend at all sites with ranges from 8.9 to 

25.1°C in Pag, 12.7 to 26.4°C in Cetina and 10.7 to 24.9°C in Pašman. All were highly correlated between 

each other (r > 0.97, P < 0.001). Minimum recorded temperatures were of 7.4, 10.9 and 6.1°C and 

maximum ones of 28.6, 28.6 and 28.3°C in Pag, Cetina and Pašman, respectively.  

 

Figure 4.1. Seawater temperature from hourly measurements, monthly salinity values and monthly average 

precipitation values at three sampling sites. 
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Monthly salinity ranges oscillated from 34.7 to 38.3 in Pag, 32.2 to 38.5 in Cetina and 36.8 to 38.3 in 

Pašman. Precipitation was measured in mm/cm3 and showed the highest monthly average in Pag with 

111.1±86.0, followed by Pašman 92.4±78.3 and Cetina 85.4±55.5. The month with maximum 

precipitation in Pag was June 2014 whereas September 2014 recorded the most rain both in Cetina and 

Pašman. Overall, besides the unusual rain in July and September 2014 and October 2015, the period 

with higher precipitation was between November and February (Figure 4.1).  

 

4.2. Feeding ecology 

4.2.1. Trophic ecology of Callista chione and Glycymeris bimaculata from two 

populations: Pag and Cetina 

4.2.1.1. Food sources: Environmental variables as food quality indicators 

SPM concentrations had means of 1.02±0.33 mg/L in Pag and 0.92±0.35 mg/L in Cetina (Table S1) and 

didn’t significantly differ (P > 0.05) between sites (Table S2). In Pag, monthly values ranged from 0.43 to 

3.98 mg/L and highest values were observed in both summers with a small peak in March 2015, whereas 

in Cetina ranges were from 0.53 to 1.99 mg/L with two main peaks observed in February and June 2015. 

Temporal variation of Chl aSPM were similar between sites (P > 0.05) ranging from 0.2 to 0.6 μg/L in Pag 

and 0.2 to 0.7 μg/L in Cetina (Tables S1, S2). In Pag, the maximum Chl aSPM peaks were observed in 

October 2014 and in January, March and October 2015 whereas the lowest concentration of Chl aSPM 

was observed in both summers. In Cetina, the highest concentration of Chl aSPM was observed during 

winter and spring and major peaks were in October 2014 and in April and May 2015. Between June-

September 2014 and June-August 2015, the low values of both Chl aSPM and % of Chl a in SPM, 

suggested that this period was the poorest for Chl aSPM availability in the water column (Fig. 4.2.1a, 

Table S1). A similar annual trend was supported from satellite Chl aSPM extracted from the MODIS-Aqua 

sensor with overall low Chl aSPM values in summer and fall and high values during spring and winter in 

the Eastern Adriatic Sea (Figure S1). Significant differences were observed in Chl aSed between sites (p < 

0.001) with ranges from 0.4 to 5.0 μg/g in Pag and 1.1 to 11.8 µg/g in Cetina; the latter showed 

particular high values between November 2014 and March 2015. The annual patterns of Chl aSPM and 

Chl aSed were significantly correlated in Cetina (r = 0.49, P < 0.05) but not in Pag (r = 0.15, P > 0.05), 

suggesting a more efficient pelagic-benthic coupling in Cetina. 

The concentration of BSiSPM showed a high temporal variability ranging from 0.03 to 0.2 mg/L in Pag and 

from 0.02 to 0.2 mg/L in Cetina and non-significant differences between sites (Tables S1, S2). Summer 

2014 presented the highest values in BSiSPM and no significant correlation was found between BSiSPM and 

Chl aSPM at any site (all at r < 0.28, P > 0.05) (Fig. 4.2.1).  
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Figure 4.2.1. Temporal variations in (a) Chlorophyll a concentration (Chl a) (note different units in both vertical 

axis), (b) C:N molar ratio, (c) δ13C, (d) δ15N and (e) biogenic silica (BSi) (note different units in both vertical axis) in 

suspended particulate organic matter (SPM) and sediment (Sed) at two sites Pag and Cetina. Error bars represent 

standard deviations. 
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The concentrations of BSiSed ranged from 0.06 to 0.2% in Pag and 0.1 to 0.3% in Cetina and showed 

significant differences between sites (t-test, P < 0.05). BSiSPM and BSiSed were coupled during most of the 

study period (Fig. 4.2.1e). Sediment grain size was relatively constant with a high content of sand and 

gravel, and low content of silt and clay (fine sediment; < 63 µm), which accounted for < 2%. Sand (2 

mm–63 µm) represented a higher portion in Cetina (87%) than in Pag (74%) whereas gravel (> 2 mm) 

was more abundant in Pag (26% vs 11%). 

Stable isotopes. In water column samples the isotopic temporal variation ranged from -25.56 to -

23.37‰ for δ13CSPM and 1.63 to 6.09‰ for δ15NSPM in Pag and from -26.19 and -22.82‰ for δ13CSPM and 

0.03 to 5.64‰ for δ15NSPM in Cetina. Two-way ANOVAs indicated significant differences between month 

and the interaction with site in δ13CSPM (at P < 0.001) but not between sites (P > 0.05), whereas for 

δ15NSPM there were significant differences between sites, month and their interaction (all at P < 0.001; 

Table 4.2.1). More enriched isotopic values were observed during summer and fall at both sites. In the 

sediment, the isotopic temporal variation ranged from -22.74 to -22.0‰ for δ13CSed and -2.26 to 3.92‰ 

for δ15NSed in Pag, and from -26.74 to 26.48‰ for δ13CSed and 1.05 to 3.30‰ for δ15NSed in Cetina. There 

were significant differences in δ13CSed between sites (at P < 0.001), whereas significant differences were 

neither found across months nor in their interaction with site (P > 0.05; Table 4.2.1). More depleted 

values in δ13CSed than δ13CSPM were observed in Cetina whereas the contrary was observed in Pag. 

Significant differences in δ15NSed (all at P < 0.001) evidenced the more depleted and variable values in 

Pag and more enriched and constant in Cetina (Fig. 4.2.1d). On the other hand, δ15NSPM showed more 

enriched values than in δ15NSed at both sites. 

 

The C:NSPM molar ratios did not significantly differ between sites (P = 0.055), with ranges from 7.3 to 

10.6 in Pag and from 6.9 to 11.2 in Cetina; but temporal differences within site were significant (at P < 

0.001), and Pag showed a lower annual mean (Table 4.2.1). There was no evident annual trend at any 

site (Fig. 4.2.1b). A significant correlation was shown between C:NSPM and SPM at both sites (r = 0.50, P < 

0.05), which reflected the incorporation of degraded material into the water column. Also, a significant 

correlation between C:NSPM and Chl aSPM in Cetina was found (r = 0.60, P < 0.05), which is illustrated with 

the coincidence of peaks in October 2014 and February and April-June 2015 (Fig. 4.2.1). BSiSPM and 

C:NSPM were not significantly correlated at any site (all at r < 0.47, P > 0.05). In all cases, POCSPM/Chl aSPM 

values were > 200 (Table S1). 

C:NSed molar ratios in Pag varied from 5.2 to 21.2 whereas in Cetina it was from 6.2 to 9.7. In Pag, high 

values were recorded from spring to mid-summer. The range of C:NSed values in Cetina was similar to 

that observed in C:NSPM (Fig. 4.2.1b, Table 4.2.1). Inorganic carbon varied from 10.7 to 12.1% in Pag and 
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from 7.6 to 11.6% in Cetina (Table S1). The values in Pag were closer to the weight % of C in the CaCO3 

molecule. Overall, more than 93% of TC was inorganic in both sites. Total N values ranged from 0–0.05% 

at both sites (Table S1).  

 

Fatty acids. FA values > 0.01 (1% of total FA) are represented in Table S4 for SPM and Sed and in Table 

S5 for DG. All pools showed the higher proportions on saturated fatty acids (SFA) with higher TFA% 

during fall and in DG also during winter. The lowest SFA values were observed during the summer, when 

PUFA was more abundant.  

Considering all FASPM (n = 33) and FASed (n = 24), a two-way ANOSIM and nMDS showed significant 

differences between sites and month (r > 0.99, P < 0.001 and r > 0.84, P < 0.001, respectively) and nMDS 

revealed the large temporal spread of the data between sites, which was more evident in SPM than in 

Sed (Fig. 4.2.2a,b).  

 

Figure 4.2.2. Above, non-metric multidimensional scaling (nMDS) of suspended particulate organic matter (SPM) 

(a) and sediment (Sed) (b) considering all FA profile means. Below, principal component analysis (PCA) output 

using most influential FA profiles in SPM (c) and Sed (d). Both sites are represented, Pag (filled) and Cetina (blank). 
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SIMPER revealed C16:1, C18:2 (n-6) and PUFA as the main contributors of dissimilarities in FA profiles 

between sites in SPM and Sed, with a cumulative contribution of nearly 50% in both pools (Table S6). 

PCAs revealed the temporal variations of the most contributing FA profiles in SPM and Sed, where PC1 

explained 53% and 57% and PC2 18% and 20% of variance, respectively (Fig. 4.2.2). In FASPM, C16:1 

showed much higher and constant values in Cetina; in Pag, comparable values were observed only in 

summer. Similarly, C18:2 (n-6) was higher in Cetina with comparable values in Pag only during fall. PUFA 

was the highest fraction during summer, particularly in Pag, and a subsequent peak during winter at 

both sites. Within PUFA, EPA and DHA were the largest contributors, with a higher abundance in Pag, 

particularly during summer. The contribution of MUFA and detrital was higher in Cetina (Fig. 4.2.2c; 

Table S4). Overall, the high values of PUFA and other indicators of fresh material (EFAs) in the summer 

and later in winter suggested that these are the periods of the highest food quality in the water column. 

Among FASed, PUFA and MUFA were also higher in Pag, especially in summer and spring. The highest 

abundance in the sediment during summer coincided with the highest abundance in SPM, which was 

not the case during winter. Also, the FASed contributing the most within PUFA was C18:2 (n-6), a marker 

of terrigenous input with higher abundance in Pag mostly during spring and summer. Within MUFA, 

C16:1 showed a higher predominance in Cetina. Detrital FAs were more abundant in Cetina, and overall, 

the lowest values were observed during fall (Fig. 4.2.2d; Table S4). 

 

Figure 4.2.3. Temporal 

variation of lipid 

concentration in (a) 

sediment (Sed; dashed 

line) and suspended 

particulate organic 

matter (SPM; 

continuous line) and 

(b) Glycymeris 

bimaculata (G. 

bimaculata) and 

Callista chione (C. 

chione) at Pag (fill) and 

Cetina (blank). 
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The concentration of lipidsSPM differed significantly between sites; however, it followed a similar 

temporal pattern (P < 0.001; Table S2) ranging from 0.16 to 0.71 mg/L in Pag and from 0.13 to 0.3 mg/L 

in Cetina (Fig. 4.2.3). At both sites, the lowest concentration of lipids took place between August and 

October (Fig. 4.2.3a). In lipidsSed, values ranged from 0.36 to 1.20 mg/g in Pag and 0.59 to 1.72 mg/g in 

Cetina; the concentration was significantly higher in Cetina and there was an opposite temporal pattern 

between sites (P < 0.001; Table S2). LipidsSPM were one order of magnitude lower than lipidsSed. 

 

4.2.1.2. Consumers: Glycymeris bimaculata and Callista chione 

Stable isotopes. The carbon isotopic signature in the digestive gland showed a temporal variation that 

ranged from -25.6 to -23.0‰ in Pag and -25.8 to -23.1‰ in Cetina in C. chione, and slightly more 

enriched δ13CDG in G. bimaculata, from -24.5 to -22.1‰ in Pag and -25.2 to -22.4‰ in Cetina (Fig. 

4.2.4a). In C. chione the δ15NDG varied from 0.02 to 0.4‰ in Pag and 1.6 to 3.2‰ in Cetina and in G. 

bimaculata from 0.2 to 1.8‰ in Pag and 1.9 to 3.2‰ in Cetina (Fig. 4.2.4b). Two-way ANOVAs revealed 

significant differences in δ13CDG between sites, month and their interaction in both species (at P < 0.001) 

and also in δ15NDG except for temporal changes between sites for C. chione (P > 0.05) (Table 4.2.1). These 

results indicated that δ13CDG variation was species-dependent with slightly more 13C-depleted values in 

C. chione. Contrarily, variation in δ15NDG was site-dependent, with more 15N-enriched values in Cetina. A 

slight temporal offset between δ13CSPM and δ13CDG was observed, where the variation in δ13CDG followed 

that of δ13CSPM weeks later (Figs. 4.2.1c, 4.2.4a). Overall, enriched isotopic values were observed 

between June 2014 to January 2015 and July to October 2015 whereas a decrease towards more 

depleted values occurred from February to June 2015. The C:NDG molar ratio showed significant 

differences between site, month and their interaction for C. chione (P < 0.001) but they were less 

evident for G. bimaculata (P > 0.001) (Fig. 4.2.4c; Table 4.2.1). 
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Table 4.2.1. Two-way ANOVA results of the 

δ13C (‰), δ15N (‰) and C:N molar ratio in 

consumer's digestive gland (Callista chione 

and Glycymeris bimaculata) and food sources 

(suspended particulate matter [SPM] and 

sediment [Sed]).  
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Figure 4.2.4. Temporal variation in (a) δ13C (‰), (b) δ15N (‰) and (c) C:N molar ratio in the consumer’s digestive 

gland from both sites. Callista chione (C. chione) and Glycymeris bimaculata (G. bimaculata) from Pag and Cetina. 
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The proportion of each food source on the consumer diets estimated by MixSIAR models revealed that 

the sampled bivalves used both SPM and Sed, supported by a Gelman-Rubin diagnostic for each model 

<1.05 (values <1.2 for all model parameters are indicative that convergence between multiple Markov 

chains has been reached, therefore, fairly confident). However, the relative importance of each food 

source differed between sites. Sed as food source was more important for Pag populations and during 

summer there was a slight contribution of SPM, whereas in Cetina it was SPM that contributed the most 

to their diet. The highest contribution of Sed in GlyCetina was in August, whereas in CallCetina it was 

precisely in the same period when it showed an evident decrease (Fig. 4.2.5). The temporal isotopic 

spreads of all pools within each population is illustrated as part of each model output corroborating 

previously described patterns (Fig. 4.2.6). The output from SIBER analysis revealed a large overlap from 

both convex hull and SEA, between species isotopic niche at each site, indicating an overall proximity in 

their feeding isotopic niche (Fig. 4.2.7a).  

 
Figure 4.2.5. Contribution of food sources: suspended particulate organic matter (SPM) and sediment (Sed) to the 

diet of Glycymeris bimaculata and Callista chione at two sites: (a) Pag and (b) Cetina. Output from a two-source 

MixSIAR model for each population. 
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According to the above mentioned results, an isotopic feeding niche overlap occurred just in November 

and March, revealing different composition of food sources throughout the year. Individuals of GlyPag 

showed the smallest isotopic feeding niche with a completely SEA overlap and a substantial convex hull 

overlap. CallPag had a wider niche, where the most enriched values overlapped with those from GlyPag. 

Based on SEAB results, CallPag and GlyCetina have a greater plasticity than the other species at these 

locations (Fig. 4.2.7c). 

 

 

Figure 4.2.6. MixSIAR output on the contribution of each food source (suspended particulate matter [SPM] and 

sediment [Sed]) in each population of (a) Glycymeris bimaculata and (b) Callista chione along a temporal gradient 

(17 months).  
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Figure 4.2.7. Isotopic (SI) and fatty acid (FA) feeding niche of two benthic suspension feeders at two sampling sites 

during 17 months. SIBER output using (a) pooled stable isotope bi-plot and (b) nMDS x-y ordinates of pooled FA 

profiles. Glycymeris bimaculata (squares) and Callista chione (triangles) in Pag (blue) and Cetina (orange). The 

continuous line represents the small sample size corrected standard ellipse areas (SEAC) and the convex hulls areas 

are the dotted lines of calculated feeding niche widths for each species. Mean standard ellipse area (SEA) 

estimates for each group (PC= Callista chione from Pag; CC= C. chione from Cetina; PG= Glycymeris bimaculata 

from Pag (CG) and G. bimaculata form Cetina (CB) for SI (c) and FA (d). Boxed areas indicate the SEAB with Bayesian 

50, 75 and 95% credible interval with the mode indicated by black squares. The maximum likelihood estimate for 

the corresponding SEAc is indicated by red squares. 
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Fatty acids. Results for FADG derive from the same pooled individuals as for SI. Most predominant FA 

group were SFA (> 58 TFA%), followed by MUFA (> 23 TFA%) and PUFA (> 5 TFA%). ANOSIM revealed 

significant differences on all FA profiles (n = 38) among each group formed by species-site (r = 0.83, P < 

0.001) and these were more evident between species than sites in the pairwise comparison (r = 1, P < 

0.001, between species; r < 0.53, P < 0.001between sites). SIMPER analyses and PCA revealed the FA 

profiles that most contributed to temporal differences for each consumer group, with PC 1 explaining 

more than 77% and PC 2 between 5-11% (Table S7; Fig. 4.2.8). PUFA, C20:5 and C22:6 contributed to 

nearly 50% of the differences between each group.  

 

 

Figure 4.2.8. Principal component analysis (PCA) output using most influential fatty acid profiles in Pag for (a) 

Glycymeris bimaculata (b) Callista chione and Cetina for (c) G. bimaculata (d) C. chione.  

In Pag, first PCA axis clearly separated spring and summer months from fall and winter. MUFA, PUFA, 

C18:2, EPA, DHA, UND and C16:1 were the highest during summer, particularly in CallPag. Detrital FA 

were more abundant during fall and winter, although present during all year (Fig. 4.2.8a,b; Table S5). In 

Cetina, a similar temporal trend was observed, and both species showed higher values of MUFA, PUFA, 
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C18:2, EPA, DHA and UND during summer and spring. Individuals of GlyCetina had similar concentrations 

in spring and summer, whereas in CallCetina these concentrations were more evident (higher) in the 

summer. Detrital FA were slightly lower in spring-summer (Fig. 4.2.8c,d; Table S5). 

MUFA values decreased after fall in GlyPag and after summer in GlyCetina, and they started to increase 

during winter-spring in the latter. Overall, summer was the season when the abundance of detrital was 

the lowest in contrast to fall and winter, whereas C18:2 (n-6) abounded the most during spring and 

summer. The herbivorous calanoid copepod markers (C20:1 and C22:1) were more abundant in spring 

and summer; oleic acid (C18:1) characteristic of zooplankton was more abundant in C. chione, and a 

diatom marker (C14:0) was more abundant in G. bimaculata. SIBER analysis of FA revealed a substantial 

overlap between SEA but not in the convex hulls from each consumer group (Fig. 4.2.7b). The FA feeding 

niche plot also showed that consumers were grouped by site and the highest niche plasticity 

corresponded to G. bimaculata at both sites (Fig. 4.2.7d). 

The concentration of lipidsDG ranged from 188.34 to 335.39 mg/g in CallPag, 189.59 to 363.90 mg/g in 

CallCetina, 130.53 to 255.36 mg/g in GlyPag and from 125.07 to 201.78 mg/g in GlyCetina. Overall, there was a 

decreasing trend from summer to spring (Fig. 4.2.3b). 

 

4.2.2. Trophic ecology of Glycymeris pilosa from two populations: Pag and 

Pašman 

4.2.2.1. Food sources: Environmental variables as food quality indicators 

Mean SPM concentration was lower in Pašman (0.81±0.31 mg/L) than in Pag (1.02±0.33 mg/L) (Table 

4.2.2) and significant differences between sites were found throughout the year (all at P < 0.001) (Table 

4.2.3). In Pašman, monthly values ranged from 0.44 to 1.45 mg/L and the highest value was associated 

with a high resuspension event observed in the area in November 2014. SPM values were the lowest in 

spring while increasing values were recorded in summer as also observed in Pag sampling site. Chl aSPM 

values were significantly similar between sites (P > 0.05) ranging from 0.2 to 0.7 μg/L in Pašman and 0.2 

to 0.6 μg/L in Pag (Tables 4.2.2, 4.2.3). The maximum Chl aSPM peaks were observed in November 2014 

and August 2015 whereas the lowest concentration of Chl aSPM was observed in March 2015, opposite to 

Pag. Significant differences were observed through time and with the interaction with site (all at P < 

0.001). All Chl aSPM concentration values coincided with the % of Chl aSPM in SPM except those shown in 

November 2014 which showed contrasting values, as a result of the high resuspension event previously 

mentioned in the area (Fig. 4.2.9a, Table 4.2.2). 
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Figure 4.2.9. Temporal variations in (a) Chlorophyll a 

concentration (Chl a), (b) C:N molar ratio, (c) δ13C, 

(d) δ15N and (e) biogenic silica (BSi) in suspended 

particulate organic matter at two sites Pag and 

Pašman. Error bars represent standard deviations.  

The concentration of BSiSPM also showed a high 

temporal variability in Pašman ranging from 

0.04 to 0.44 mg/L (that of November 2014) (Fig. 

4.2.9e). It is interesting to note, that the second 

highest value was only 0.15 mg/L, which is 

closer to values observed in Pag (0.02 to 0.2 

mg/L).  Statistical analysis confirmed that there 

were no significant differences between sites, 

time and their interaction (all at P < 0.001) 

(Tables 4.2.2, 4.3.3). September 2014 and later 

summer 2015 presented the highest values in 

BSiSPM and a significant positive correlation was 

found between BSiSPM and Chl aSPM (at r < 0.72, 

P < 0.05). Sediment grain size was constituted 

of 83% sand, 13% gravel and a 4% of silt and 

clay (fine sediment). 

The concentration of lipids in SPM showed 

overall higher values in Pag, ranging from 0.16 

to 0.29 mg/g, than in Pašman, which varied 

from 0.12 to 0.38 mg/g. Again, the relatively 

higher values in November are likely associated 

with resuspension. If this month is excluded, 

average values in Pašman were 0.14±0.02, 

which were clearly lower than those in Pag, 

0.23±0.02 (Fig. 4.2.10). 
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Table 4.2.2. Descriptive table of environmental and biochemical parameters in suspended particulate matter 

(SPM) in Pašman (mean ± SD). Abbreviations: Temperature (T; °C), Salinity, Suspended particulate matter 

concentrations (SPM; mg/L), Chlorophyll a (Chl a; μg/L), Chl a fraction within SPM (Chl a/SPM; %), Biogenic silica 

(BSi; mg/L), BSi fraction within SPM (BSi/SPM; %), Particulate organic carbon and Chl a ratio (POC/Chl a).  

Season Month 

SPM 

T  Salinity SPM  Chl a  Chl a/SPM  BSi  Bsi/SPM POC/Chl a 

(°C)   (mg/L) (µg/L) (%) (mg/L)  (%)   

Fall 

Sep 22.46 38.14 1.4±0.2 0.4±0.0 0.028 0.15±0.0 10.72 395.55 

Oct 21.11 37.05 0.8±0.3 0.5±0.2 0.057 0.06±0.0 7.28 456.34 

Nov 19.00 37.80 8.3±1.6 0.7±0.0 0.008 0.44±0.1 5.26 475.98 

Winter 

Dec 13.23 36.80 0.7±0.2 0.3±0.0 0.050 0.11±0.0 15.42 504.07 

Jan 10.69 37.39 0.7±0.2 0.4±0.1 0.059 0.05±0.0 6.75 295.21 

Feb 10.73 37.98 0.4±0.1 0.3±0.0 0.062 0.05±0.0 11.17 459.97 

Spring 

Mar 11.58 37.06 0.6±0.3 0.2±0.1 0.019 0.04±0.0 7.76 549.13 

Apr 13.76 37.54 0.5±0.2 0.3±0.0 0.070 0.07±0.0 13.31 525.39 

May 18.43 37.45 0.6±0.2 0.4±0.0 0.063 0.06±0.0 10.46 744.62 

Summer 

Jun 21.77 37.53 0.7±0.1 0.3±0.0 0.027 0.07±0.0 9.95 662.05 

Jul 24.88 38.30 1.0±0.1 0.3±0.1 0.036 0.06±0.0 6.00 538.08 

Aug 26.40 37.12 0.8±0.1 0.5±0.0 0.070 0.06±0.0 7.59 349.51 

 

Table 4.2.3. Two-way ANOVA results of environmental parameters in Pašman. Suspended particulate matter 

(SPM) in mg/L, Chlorophyll a (Chl a) in µg/L and Biogenic silica (BSi) in mg/L. Probabilities are expressed as: ** P < 

0.001. 

 

Two-way ANOVA         

  df SS MS F P 

SPM (mg/L) 

     site 1 7.00 7.00 44.51 < 0.001** 

month 11 81.13 7.38 46.88 < 0.001** 

site*month 11 78.13 7.10 45.15 < 0.001** 

Residuals 48 7.55 0.16 
  Chl a (µg/L) 

     site 1 0.00 0.00 0.82 0.371 

month 11 0.43 0.04 6.82 < 0.001** 

site*month 11 0.53 0.05 8.32 < 0.001** 

Residuals 47 0.27 0.01 
  BSi (mg/L) 

     site 1 0.03 0.03 65.06 < 0.001** 

month 11 0.20 0.02 36.77 < 0.001** 

site*month 11 0.22 0.02 42.05 < 0.001** 

Residuals 48 0.02 0.00     
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The isotopic temporal variation in SPM ranged from -25.26 to -20.63‰ for δ13CSPM and 3.12 to 5.86‰ 

for δ15NSPM in Pašman. These values were more enriched in both isotopes than in Pag, although when 

discarding δ13C from November 2014, the most enriched value was -22.26‰. Two-way ANOVAs 

indicated significant differences between site, month and their interaction in δ13CSPM (all at P < 0.001) 

and δ15NSPM (all at P < 0.05) (Table 4.2.4). The isotopic cycle was quite synchronous between sites, and 

more 13C-enriched values were observed during summer and fall at both sites. A pattern was less clear 

for δ15NSPM which showed decreasing values during summer 2015. Lopez et al. (1995) in Ryan et al. 

(1990) 

 

Although C:NSPM molar ratios followed a similar pattern during fall and winter, they significantly differed 

between sites (P < 0.001), with ranges from 7.7 to 11.6 in Pašman, higher than those observed in Pag 

(from 7.3 to 10.6) (Table 4.2.4). A pattern was shown in Pašman with increasing values in late 

winter/spring followed by a steady decrease towards the summer (Fig. 4.2.9b), unlike in Pag. Also, non-

significant correlations were found neither between C:NSPM and Chl aSPM (r = 0.55, P > 0.05) nor C:NSPM 

and BSiSPM (r = 0.24, P > 0.05), as had also been shown in Pag. As in Pag, POCSPM/Chl aSPM values in 

Pašman were > 200, indicating a predominance of heterotrophic/mixotrophic organisms, or detrital 

carbon (Table 4.2.2). 

 

 

Figure 4.2.10. Seasonal variation of lipid concentration in the digestive gland of Glycymeris pilosa (DG; continuous 

line) and in suspended particulate matter (SPM; dashed line) at Pašman (green) and Pag (blue). 

 

 



54 

 

4.2.2.2. Consumer: Glycymeris pilosa 

The carbon isotopic signature in DG 

showed a temporal variation that 

ranged from -22.5 to -19.7‰ in 

Pašman and -25.2 to -22.8‰ in Pag 

(Fig. 4.2.11a). The δ15NDG varied from 

3.5 to 4.7‰ in Pašman and 0.3 to 

1.4‰ in Pag for the same period (Fig. 

4.2.11b). Two-way ANOVAs revealed 

significant differences in δ13CDG and 

δ15NDG between sites and month (all 

at P < 0.001) and also their interaction 

(at P < 0.05) at both sites (Table 

4.2.4). These results are consistent 

with the lack of overlap between 

populations. Overall, 13C-depleted 

values were observed during the end 

of winter and spring whereas an 

increase towards more enriched 

values varied between populations. In 

Pašman, values were more enriched 

in fall and summer, while in Pag the 

highest values were shown in fall and 

early winter. The C:NDG molar ratio 

showed significant differences 

between site and month (all at P < 

0.001) but not in their interaction (P > 

0.05) indicating that temporal isotopic 

values behaved in a similar pattern 

between populations (Fig 4.2.11c, Table 

4.2.4). 

 

Figure 4.2.11. Temporal variation in (a) δ13C (‰), (b) δ15N (‰) and 

(c) C:N molar ratio in the digestive gland of Glycymeris pilosa from 

Pag and Pašman. 
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The concentration of lipids in DG was also analyzed seasonally in Pašman, and it was compared to the 

same months in Pag. Average values in Pašman were 100.6±7.1 mg/g and those in Pag were 

considerably higher, 180.9±5.3 mg/g (Fig. 4.2.10). 

 

Table 4.2.4. Two-way ANOVA results of the δ13C (‰), δ15N (‰) and C:N molar ratio in the digestive gland of 

Glycymeris pilosa and suspended particulate matter (SPM) between Pašman and Pag. 

  Glycymeris pilosa   SPM 

  df SS MS F P df SS MS F P 

δ13C (‰)                     

site 1 111.32 111.32 577.82 < 0.001* 1 10.97 10.97 109.06 < 0.001* 

month 11 43.03 3.91 20.31 < 0.001* 11 75.03 6.82 67.83 < 0.001* 

site*month 9 4.92 0.55 2.84 0.01 11 11.26 1.02 10.18 < 0.001* 

Residuals 39 7.51 0.19     48 4.83 0.10     

                      

δ15N (‰)                     

site 1 132.25 132.25 3408.11 < 0.001* 1 6.60 6.60 10.38 0.002 

month 11 7.76 0.71 18.18 < 0.001* 11 51.08 4.64 7.30 < 0.001* 

site*month 9 0.99 0.11 2.83 0.012 11 29.08 2.64 4.16 < 0.001* 

Residuals 39 1.51 0.04     48 30.52 0.64     

                      

C:N molar                     

site 1 57.43 57.43 128.85 < 0.001* 1 8.74 8.74 16.85 < 0.001* 

month 11 24.96 2.27 5.09 < 0.001* 11 35.40 3.22 6.21 < 0.001* 

site*month 9 5.01 0.56 1.25 0.30 11 21.19 1.93 3.72 < 0.001* 

Residuals 39 17.38 0.45     48 24.88 0.52     
 

As observed from the isotopic biplot there is a clear separation between populations based on digestive 

gland values whereas ranges between SPM did not differ that much (Fig. 4.2.12).  
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Figure 4.2.12. Stable isotope 

biplot (δ13C, δ15N) (‰; mean 

± SD) showing the isotopic 

values in the digestive gland 

(DG) of Glycymeris pilosa and 

suspended particulate matter 

(SPM) from Pašman and Pag 

populations. 

 

 

 

 

 

4.3. Reproduction 

 

4.3.1. Reproductive cycle of Callista chione at two study sites 

4.3.1.1. Histological analysis 

Specimens from Pag and Cetina used for histological analysis had a mean shell length of 67.8±4.7 mm 

(n=245) and 64.7±5.7 mm (n=220), respectively. There were no significant differences in shell length 

between males and females with respect to sampling site (two-way ANOVA F = 2.278, P = 0.133 in Pag 

and F = 0.251, P = 0.617 in Cetina). A total of 133 males (54.3%), 105 females (42.9%) and 7 

hermaphrodites (2.8%) were identified in Pag population, while 116 males (52.7%), 97 females (44.1%), 

3 hermaphrodites (1.4%) and 4 sexually undifferentiated individuals (1.8%) were determined in samples 

from Cetina. The sex ratio did not differ significantly from 1:1 (chi-square = 3.294, P = 0.069 in Pag and 

chi-square = 1.695, P = 0.193 in Cetina).  

 

The resulting histological sections showing the main characteristics of female and male gonad 

developmental stages are shown in Fig. 4.3.1. Hermaphroditic samples are shown in Fig.4.3.2. 



57 

 

Figure 4.3.1. 

Photomicrographs of the 

histological sections of 

female (left) and male 

(right) gonads of Callista 

chione characterizing each 

stage of gonadal maturity:  

(a,f) early active 

(b,g) late development 

(c,h) ripe 

(d,i) spawning and (e,j) 

spent/inactive. Scale bar 

100 µm.  

Og: oogonia 

O1: primary oocytes O2: 

secondary oocytes 

M: mature oocytes sO: 

spawned oocytes dO: 

degenerative oocyte 

under resorption 

aw: acinus wall;  

Sg: spermatogonia, Sp1: 

primary spermatocyte 

Sp2: secondary 

spermatocyte 

Sz: sperm cells 

St: sperm tails 

h: haematocytes. 
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Figure 4.3.2. Two hermaphrodite individuals of Callista chione shown at different magnifications and stages. (a) A 

spawned individual with both free oocyte and spermatocytes, scale bar 100 µm. (b) A spent to early stage with 

new acini walls and development of oogonia and primary oocytes as well as free sperm cells under reabsorption, 

scale bar 20 µm. O1: primary oocytes, M: mature oocytes, Sz: sperm cells. 

 

The monthly relative frequencies of the various gonad developmental stages were used to estimate the 

timing of the reproductive cycle at each site, using qualitative histological analysis (Fig. 4.3.3). The main 

period of gamete release at Pag started at ~12°C and extended over approximately 4 months from April 

until July 2015, accompanied with an increase in temperatures (Fig. 4.3.3a,c). The maximum spawning 

peak occurred in July 2015, coinciding with nearly the highest temperatures in the area (> 24°C). In 

October 2014 around 15% of females were in ripe stage which may have occasioned the small spawning 

peak observed during December 2014 and January 2015, and consequently, the presence of four 

different gonadal stages was identified in December 2014.  

 

The spawning allocation in the population at Cetina started in January 2015 (particularly in females) at 

~14°C, and it included the time with the lowest mean temperature (12.7°C) that could reach down to 

10.9°C, what is 4°C higher than the minimum temperature recorded in Pag. The main spawning event 

was identified between May and June 2015, coupled with the increasing temperatures (Fig. 4.3.3b,d). 

Interestingly, females were in slightly advanced gonad developmental stages and presented a higher 

percentage of spawning (Fig. 4.3.3b). Likewise, a spent/inactive stage was barely identified for females 

and those with gonads at the end of the spawning period, were represented in more than 80% of the 

samples by an early active stage. Regardless of sex, the population remained in ripe stage for a long 

period during winter and early spring.  
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Figure 4.3.3. Monthly relative frequencies of gonad development stages of Callista chione and mean monthly 

temperature at Pag and Cetina sampling sites (a,b) females and (c,d) males.  

 

Overall, Callista chione was determined to be sexually active during almost the whole year at both study 

sites and individuals coped with a wide range of temperature at both sites: 21.2°C and 17.6°C, 

respectively. A main spawning peak was identified representing the end of gametogenesis, and it took 

place earlier at Cetina (May/June 2015) than at Pag (July 2015). Unlike Cetina population, individuals 

from Pag were in early active and late development stages for a longer period, and there was just a 

small transition to ripe stage prior to the spawning timing. The spent/inactive stages lasted for a little 

longer at Pag and in males from Cetina, than in females from Cetina. Also, specimens analyzed from Pag 

had a more synchronous cycle. The end of gametogenesis and start of new formation was identified for 

two consecutive years coinciding with the high temperature peaks, July 2014 and June/July 2015. It is 

important to highlight the maximum mean temperatures recorded during two consecutive years which 

were higher in 2015 than 2014, with an increase of 1°C (Pag) and nearly 2°C (Cetina) (in August 2014, 

24.1°C and 24.6°C, respectively).  

 

The Mean Gonad Index (MGI) indicated that despite the slight advancement of gonadal stage in females 

during certain periods, both female and male cycles showed a highly significant synchronicity at both 

sites (r = 0.86, P < 0.001 at Pag and r = 0.88, P < 0.001 at Cetina) (Fig. 4.3.4). The highest MGI values, that 

is, when gonads were the ripest, were identified between January and March 2015 (excluding the small 
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peak observed in October 2014) at Pag, and during December 2014 and April 2015 at Cetina, when 

temperatures were at their lowest. Contrary, the release of gametes was coupled with an increase of 

temperatures where the lowest MGI values coincided with the highest mean temperatures at both sites 

during two consecutive years. 

 

Figure 4.3.4. Mean monthly gonad index values of Callista chione and mean monthly temperature (circles); males 

(squares) and females (triangles) from (a) Pag and (b) Cetina. 

 

It is important to note that during this study the presence of parasites and signs of tissue infection 

where evidenced in histological preparations at both sites, although in a much lesser extent than in G. 

bimaculata, as reported later on.  

 

4.3.1.2. Gonadosomatic Index 

Individuals used for determining the gonadosomatic index (GSI) had a mean shell length of 64.0±3.8 mm 

in Pag and 61.6±2.9 mm in Cetina. Based on shell length ranges all individuals were sexually mature and 

the moment of spawning was considered with the decrease in GSI.  

Complementary, body mass index (BMI) was determined to better understand temporal patterns in GSI 

and the reproductive investment for each population. BMI values of specimens collected in Pag 

(31.86±4.64) were significantly greater than those from Cetina (28.73±4.22) (Mann-Whitney, P < 0.001). 

The largest mean BMI values were 37.94 and 36.42 in Pag (corresponding to April and May 2015) and 

33.56 and 30.95 in Cetina (corresponding to July 2014 and June 2015). Overall, the BMI showed higher 

amplitude following the temperature changes in Pag whilw smaller ranges were observed in Cetina (Fig. 

4.3.5a). 

Similarly, GSI values from Pag (0.050±0.046) were significantly greater than those from Cetina 

(0.037±0.031) (Mann-Whitney, P < 0.001) (Fig. 4.3.5b). The combination of both indices showed a 

positive correlation (r = 0.77, P < 0.001) in Pag, indicating a synchrony along the temporal pattern. This 
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pattern was not observed in Cetina (r = 0.13, P > 0.05), where the highest BMI values corresponded to 

low GSI values. There were statistically significant differences in BMI and GSI values between sites, 

month and their interaction, thus, confirming the different spatial and temporal timing of somatic and 

gonadal growth (Table 4.3.2). 

 

 

Figure 4.3.5. Seasonal variation in body mass index (BMI) (a) and gonadosomatic index (GSI) (b) of Callista chione 

for Pag and Cetina populations. Horizontal bars indicate median value respectively, boxes span the interquartile 

range ‒where 50% of the values fall‒ and discontinuous whiskers represent the data range excluding the outliers. 

 

Table 4.3.2. Analysis of variance for comparison of body mass index and gonadosomatic index between two 

populations of Callista chione. Month was a considered continuous variable during the total length of the sampled 

period; ***P < 0.001 

 

Effect df SS Mean Sq F-ratio P-value 

Body mass index 

     Location 1 1.3354 1.3354 123.387 < 0.001 

Month 15 2.5205 0.16803 15.526 < 0.001 

Location * Month 14 1.6214 0.11582 10.701 < 0.001 

Error 547 5.9201 0.01082 
  Gonadosomatic index 

     Location 1 14.65 14.6499 86.799 < 0.001 

Month 15 381.22 25.4146 150.58 < 0.001 

Location * Month 14 63.12 4.5083 26.711 < 0.001 

Error 546 92.15 0.1688     
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In Pag, GSI started to increase in the late winter/early spring and reached a maximum peak in June 2015, 

showing quite steady values for the entire spring. The gonadal investment in Pag population reached its 

maximum along the increasing temperatures and persisted for a few months (between March and 

June). A small peak was observed during October 2014 but a marked drop was identified as the main 

spawning discharge in July 2015, at temperatures around 24°C, and a resting stage was nearly 

immediately reached after that (August 2015) coinciding with the highest annual temperatures. A 

positive correlation was found between temperature and mean GSI, however it was not statistically 

significant (r = 0.45, P > 0.05) (Fig. 4.3.6a). 

In Cetina, increasing GSI values were observed during the winter months reaching maximum values in 

early spring (March 2015), when the lowest mean monthly temperatures were recorded (12.7°C). 

Spawning took place as a series of consecutive events, indicating liberation of gametes in different 

pulses, during late spring and summer, reaching a nearly complete resting stage in September, observed 

for two consecutive years. The start of a new gametogenic cycle took place in the late summer/early 

autumn, with the maximum temperatures. The GSI in Cetina was strongly negative correlated to 

temperature (r = -0.95, P < 0.001) (Fig. 4.3.6b).  

 

Figure 4.3.6. Relationship between the seasonal variation in gonadosomatic index (GSI) of Callista chione and 

mean monthly temperature (dashed line) for populations of Pag (a) and Cetina (b). White circles and horizontal 

bars indicate mean and median value respectively; boxes span the interquartile range, where 50% of the values 

fall, and discontinuous whiskers represent the data range excluding the outliers. 
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Whereas temperature did not influence the spawning events the same way at both sites, the start of 

gametogenesis coincided with the decrease of temperatures in both populations, evidenced during two 

consecutive years and the reproductive cycle was characterized by a unimodal distribution. 

 

4.3.1.3. Reproductive investment, output and fecundity 

Seasonal changes in gonadal mass were present in both populations. During the ripest stages, prior to 

spawning, the highest gonadal production was observed in Pag with a mean weight of 348±13 mg 

whereas in Cetina it was 165±6.70 mg. Observed differences were statistically significant between sites 

(ANOVA, F = 168.5, P < 0.001) and shell length did not significantly influence this variation in the 

response variable (ANCOVA, F = 0.587, P > 0.05), indicating a higher reproductive investment in Pag. The 

maximum recorded gonadal mass in this period was 699 mg (Pag) and 411 mg (Cetina).  

A linear relationship between gonadal mass and total body mass from individuals with highly developed 

gonads (in mature stages) was also significant (r = 0.57, P < 0.001) (Fig. 4.3.7). Gonads represented a 

16% of total body mass in Pag population, and around 7% in Cetina during months preceding the 

gamete release. At full maturity, gonadal occupation in Pag was 20.7% and reached a mean value of 

2.1% after spawning, implying a drop of up to 18% and representing a loss of gonadal mass of about 260 

mg. In Cetina, GSI increased up to 12.2% in March 2015 and reached a mean value of 0.9% after 

spawning, a drop of up to 11% and an accumulated loss of about 160 mg (considering the continuous 

spawning events) (see Fig. 4.3.6). Therefore, differences in the reproductive output were evidenced 

between sites and showed similar results for two consecutive years, being higher in Pag. 

 

Figure 4.3.7. Relationship between gonadal mass (mg dw) and total body mass (mg dw) before spawning in Pag 

(blue) and Cetina (orange) 
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Overall, based on mean population values, specimens from Pag released 82% of the gonads whereas 

those from Cetina released nearly the totality of its gonadal mass (96%). In terms of fecundity per 

brood, and assuming an equal weight for males and females, a higher proportion of gonadal mass into 

reproduction was invested in Cetina, despite the highest investment and output from Pag population 

(Fig. 4.3.6). 

 

4.3.1.4. Comparative analysis of methods 

Considering the seasonal pattern of the reproductive cycle, the estimation by means of qualitative 

histological analysis and gonadosomatic index, led to similar results (Fig. 4.3.8). Both methodologies 

determined the same main spawning periods where the highest values of GSI corresponded to months 

with ripe and spawned gonad stages. On the other side, low GSI values were coupled with the 

spent/inactive and early developmental stages. Overall, the maximum values were between March and 

June 2015 in Pag, and between January and May 2015 in Cetina, coinciding with the ripe/spawning 

stages. The identification of the transition between the last spawning event and spent/inactive period is 

evidenced by the drop in GSI values. 

 

Figure 4.3.8. Combination of two methodologies for determining reproductive cycle in Callista chione from 

population in Pag (a) and Cetina (b). Histogram shows monthly relative frequencies of developmental stages for 

the entire population based on histological analysis and dashed line shows the temporal pattern of gonadosomatic 

index (GSI); white circles correspond to monthly mean GSI values. 
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4.3.2. Reproductive cycle of Glycymeris bimaculata at two study sites 

4.3.2.1. Histological analysis 

Specimens from Pag and Cetina used for histological analysis had a mean shell length of 76.9±6.2 mm 

(n=320) and 65.8±4.8 mm (n=280), respectively. Macroscopic sexual determination is feasible except 

during periods of gonadal inactivity. Female gonads are pink/purple colored whereas males are 

characterized by a whitish/yellowish coloration. There were no significant differences in shell length 

between males and females across time with respect to sampling site (two-way ANOVA, F = 1.296, P = 

0.204 in Pag and F = 1.137, P = 0.328 in Cetina). A total of 178 males (55.6%), 141 females (44.1%) and 1 

hermaphrodite (0.3%) were identified in Pag population, while 149 males (53.2%), 129 females (46.1%), 

1 hermaphrodite (0.4%) and 1 sexually undifferentiated individual (0.4%) were determined in samples 

from Cetina. The sex ratio was 1.0:1.3 in Pag (chi-square = 4.292, P = 0.038) whereas in Cetina did not 

significantly differ from 1:1 (chi-square = 1.439, P = 0.230).  

 

The resulting histological sections showing the main characteristics of female and male gonad 

developmental stages (given in Table 3.4.1) are shown in Fig. 4.3.9. A detail of male components during 

spermatogenesis is shown in Fig. 4.3.10a and a hermaphroditic sample in Fig. 4.3.10b. 

 

As observed in C. chione, histological preparations of G. bimaculata individuals revealed a high degree of 

infection by parasites which in some cases added difficulties during the gonadal stage interpretation 

(Fig. 4.3.11). Gonadal neoplasia was particularly present in the majority of individuals throughout the 

year, and it was more evidenced during early active stages as illustrated in the stage representation 

shown in Fig. 4.3.9f, which is stained in pink. 
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Figure 4.3.9. 

Photomicrographs of the 

histological sections of 

female (left) and male 

(right) gonads of 

Glycymeris bimaculata 

characterizing each stage 

of gonadal maturity:  

(a,f) early active 

(b,g) late development 

(c,h) ripe 

(d,i) spawning and (e,j) 

spent/inactive. Scale bar 

200 µm.  

Og: oogonia 

O1: primary oocytes O2: 

secondary oocytes 

M: mature oocytes sO: 

spawned oocytes dO: 

degenerative oocyte 

under resorption 

aw: acinus wall;  

Sg: spermatogonia, Sp1: 

primary spermatocyte 

Sp2: secondary 

spermatocyte 

Sz: sperm cells 

St: sperm tails. 
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Figure 4.3.10. (a) Detail of male spermatogenesis components. Sg: spermatogonia, Sp1: primary spermatocyte, 

Sp2: secondary spermatocyte and Sz: sperm cells. (b) Hermaphrodite individual of Glycymeris bimaculata in a spent 

stage. M: mature oocytes, Sz: sperm cells. 

 

 

Figure 4.3.11. Specimens showing signs of gonadal infection in (a) female and (b) male in Glycymeris bimaculata. 

The monthly relative frequencies of gonad developmental stages, as a result of qualitative histological 

analysis, estimated the reproductive cycle at each site (Fig. 4.3.12). The main period of gamete release 

at Pag coincided with the highest temperatures in both years; in 2014 a short spawning duration was 

observed in females in August and in males during September whereas in 2015 spawning started in 

July/August and it was prolonged until September/October (Fig. 4.3.12a,c). Therefore the spawning 

peaks were observed in September 2014 and October 2015 with the decline of temperatures. A new 

gametogenic cycle started right after spawning and the early active stage, shared with a certain 

percentage of individuals in spent stage, was dominant for a few months, particularly in males. Females 

had a long period with a high percentage of individuals in late development stage between February and 

June, whereas the ripe stage was briefly reached represented by a small percentage of individuals in 
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May, June and July 2015 and rapidly followed by the spawning stage. In males, late development 

represented a lower percentage of individuals prior to the ripe stage, suggesting a quick transition from 

early active to ripe stages which extended from November until June.  

 

Figure 4.3.12. Monthly relative frequencies of gonad development stages of Glycymeris bimaculata and mean 

monthly temperature at Pag and Cetina sampling sites (a,b) females, (c,d) males.  

The spawning allocation in the population from Cetina took place between August and September 2014 

and in 2015 it started earlier, around June and up to July/August. In both females and males, the 

spawning stage represented again a short period, and in 2014 the main spawning peak was in 

September with the decreasing temperatures whereas in 2015 it occurred a month earlier, in August, 

when temperatures were at its highest (Fig. 4.3.12b,d). A resting stage was not completely observed, 

and a small percentage of individuals were in spent stage; this was especially evident in males, where 

this stage was present up to March 2015. Similarly like in Pag population, a late development stage 

quickly overtook the early active stage in females whereas early active was predominant in males for a 

long period (nearly 6 months), followed by a short transition between late development and ripe 

individuals between May and June 2015. 

Overall, Glycymeris bimaculata was determined to be sexually active during the whole year at both 

study sites, with a short period of individuals in spent stage and high synchronous cycles in both 

populations. Females were in slightly advanced gonad developmental stages at both sites and showed a 

shorter period of individuals in early active stage than males. Mature individuals in the ripe stage were 
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found, at most, during 2 months rapidly followed by spawning. The spawning peak in Pag population 

was nearly similar between years (September/October). Interestingly, the population from Cetina, had 

an earlier spawning peak in 2015 (August) than in 2014 (September), being 2015 a year characterized 

with the highest temperatures recorded since many years.  

The MGI indicated that despite the slight advancement of gonadal stage in females during certain 

periods, both female and male cycles showed a synchronicity at both sites, more highly significant in 

Cetina (r = 0.65, P < 0.05 at Pag and r = 0.86, P < 0.001 at Cetina) (Fig. 4.3.13). The highest MGI values 

were identified in August 2014 and July 2015 at Pag coupled to the highest temperatures and during 

July/August 2014 and May-July 2015 at Cetina, the later when temperatures were still increasing. 

Contrary, the release of gametes up to the lowest MGI values was coupled to decreasing temperatures, 

and values of 3-4 corresponding to early active and late development stages coincided with the lowest 

temperatures recorded at both sites (Fig. 4.3.13). 

 

 

Figure 4.3.13. Mean monthly gonad index values of Glycymeris bimaculata and mean monthly temperature 

(circles); males (squares) and females (triangles) from (a) Pag and (b) Cetina. 
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4.3.2.2. Gonadosomatic index at Pag 

Individuals used for determining the GSI had a mean shell length of 75.7±4.2 mm. No significant 

differences were shown in shell length along the sampled period (ANOVA, F = 0.261, P > 0.05). Based on 

shell length ranges all individuals were sexually 

mature and the decrease in GSI was considered 

as the moment of spawning. There were no 

significant differences between sex and GSI 

(ANOVA, F = 2.334, P > 0.05) as illustrated in Fig. 

4.3.14; therefore, data from both sexes were 

analyzed together to increase sample size for 

analysis. GSI values averaged 0.106±0.073. The 

highest mean monthly GSI values were 0.192, 

0.204 and 0.208 (in August 2014, August and 

September 2015, respectively) and the lowest 

ones were recorded in October of both years, 

0.012 (in 2014) and 0.018 (in 2015) (Fig. 4.3.15b). 

Complementary, temporal patterns in BMI were 

also illustrated in this study to assess their 

relationship with GSI. Over the study period, BMI 

values averaged 22.4±3.1. The largest mean 

monthly BMI value was 26.1 shown in summer 

(August 2015) and the lowest mean was 18.4 

shown in winter (December 2014) (Fig. 4.3.15a). 

These two indices had a positive correlation (r = 

0.63, P < 0.001), indicating a synchrony along the 

temporal pattern.  

Figure 4.3.14. Seasonal variation in gonadosomatic index (GSI) of Glycymeris bimaculata between females and 

males. Horizontal bars indicate mean and median value respectively; boxes span the interquartile range, where 

50% of the values fall, and discontinuous whiskers represent the data range excluding the outliers (above Figure). 
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Figure 4.3.15. Relationship between the seasonal variation in body mass index (BMI) (a) and gonadosomatic index 

(GSI) (b) of Glycymeris bimaculata and mean monthly temperature (dashed line) at Pag. White circles and 

horizontal bars indicate mean and median value respectively; boxes span the interquartile range - where 50% of 

the values fall - and discontinuous whiskers represent the data range excluding the outliers. 

GSI started to increase in the late fall/early winter and it was during spring when the values highly 

increased reaching a maximum peak in August─September 2015. This summer peak was also suggested 

from the previous year in August. The gonadal investment reached its highest values along with the 

temperature maxima in both years and GSI considerably dropped with decreasing temperatures. The 

main spawning discharge in 2014 was identified in September, at temperatures between 20 ─ 24°C, and 

a resting stage was nearly immediately reached after that (October). In the following year, the spawning 

timing was even more distinct and took place in October. Interestingly, October also showed a narrower 

spread of data, indicating that most of the sampled specimens reached the lowest content of gonadal 

mass while in previous months the variation between specimens was higher. A positive correlation was 

significantly found between temperature and mean GSI (r = 0.56, P < 0.05). The onset of gametogenesis 

was observed late in 2014 with a moderate GSI increase at decreasing temperatures; GSI values started 

to increase considerably with the temperature rising. The reproductive cycle was characterized by a 

unimodal distribution as evidenced by two consecutive years (Fig. 4.3.15b). 

 

4.3.2.3. Reproductive investment, output and fecundity 

Seasonal changes in gonadal mass were present in this population. During the ripest stages, prior to 

spawning, the highest mean gonadal mass was of 4.7±1.3 g in August 2014 and of 5.3±1.0 g in both 
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August and September from 2015. The maximum gonadal occupation in this period was 6.8 g (August 

2014) and 7.4 g (September 2015).  

A linear relationship between gonadal mass and total body mass from individuals with highly developed 

gonads (in mature stages) also showed to be significant (r = 0.66, P < 0.001) (Fig. 4.3.16). Gonads 

represented about 36% of total body mass during months preceding the gamete release. At full 

maturity, gonadal occupation in 2014 was up to 27.1% and reached a mean value of 1.2% after 

spawning, implying a drop of up to 26% and representing an average loss of gonadal mass of about 0.93 

g. In 2015, gonadal occupation increased up to 20.8% in September and reached a mean value of 1.8% 

after spawning, a drop of up to 19% and an average gonadal mass loss of about 1.21 g. Therefore, 

differences in the reproductive output were shown for two consecutive years, and these were higher in 

2014. Overall, based on mean population values, specimens from 2014 released 93.8% of the gonads 

and those from 2015 released 92.5%. In terms of fecundity per brood, a high percentage of gonadal 

mass was invested into reproduction (Fig. 4.3.16). 

 

Figure 4.3.16. Relationship between gonadal mass (m dw) and total body mass (g dw) before spawning Glycymeris 

bimaculata. 

 

4.3.2.4. Comparative analysis of methods 

As in the case of C. chione, the combination of qualitative histological analysis and gonadosomatic index 

to assess the seasonal pattern of the reproductive cycle, led to similar results (Fig. 4.3.17). Both 

methodologies also determined the same main spawning periods where the highest values of GSI 

corresponded with ripe and spawned months. On the other side, low GSI values were coupled with 

months with the highest percentage of individuals in the spent/inactive stage, followed by increasing 

GSI values as the gametogenic cycle was advancing. Overall, the maximum values were in August 2014 
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and August and September in 2015. Similarly, a sharp decrease is evidenced between the last spawning 

event and the spent/inactive period. 

 

Figure 4.3.17. Combination of two methodologies for determining the reproductive cycle in Glycymeris 

bimaculata. Histogram shows monthly relative frequencies of developmental stages for the entire population 

based on histological analysis and dashed line shows the temporal pattern of gonadosomatic index (GSI); blue 

circles correspond to monthly mean GSI values.  

 

4.3.3. Reproductive cycle of Glycymeris pilosa from Pašman  

4.3.3.1. Histological analysis 

Specimens of Glycymeris pilosa used for histological analysis had a mean shell length of 71.0±5.7 mm 

(n=231). Macroscopic sexual determination is feasible except during periods of gonadal inactivity. 

Female gonads are pink/purple colored whereas males are characterized by a whitish/yellowish 

coloration. There were no significant differences in shell length between males and females with 

respect to sampling month (ANOVA, F = 1.319, P > 0.05). A total of 129 males (51.1%), 121 females 

(48.5%) and 1 sexually undifferentiated specimen (0.4%) were identified. The sex ratio did not differ 

significantly from 1:1 (chi-square = 0.256, P = 0.613). The resulting histological sections showing the 

main characteristics of female and male gonad developmental stages (given in Table 3.4.1) are shown in 

Fig. 4.3.18.  
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Figure 4.3.18. 

Photomicrographs of the 

histological sections of 

female (left) and male 

(right) gonads of 

Glycymeris pilosa 

characterizing each stage 

of gonadal maturity:  

(a,f) early active 

(b,g) late development 

(c,h) ripe 

(d,i) spawning and (e,j) 

spent/inactive. Scale bar 

200 µm.  

Og: oogonia 

O1: primary oocytes O2: 

secondary oocytes 

M: mature oocytes sO: 

spawned oocytes dO: 

degenerative oocyte under 

resorption 

aw: acinus wall;  

Sg: spermatogonia, Sp1: 

primary spermatocyte 

Sp2: secondary 

spermatocyte 

Sz: sperm cells 

St: sperm tails. 
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In this study, the reproductive cycle over 12 months was estimated by looking at the monthly relative 

frequencies of gonad developmental stages on basis of histological analysis (Fig. 4.3.19). Due to 

sampling design, the end of the 2014 reproductive cycle and nearly all 2015 cycle were covered. 

Samples collected in 2014 showed a little percentage of ripe individuals in September whereas the 

release of gonads, as indicated by the spawning stage, was nearly prolonged for three months in 

females. A low percentage of individuals in spent stage was shown between October and December. 

After this short stage, the onset of the new gametogenic cycle took place in December when 

temperatures were reaching the lowest values. Between January and May individuals were found both 

in early and late development stages, and as temperatures were increasing, the late development stage 

had a higher coverage. Males had a more extensive period in early development stage that lasted for 

nearly 4 months. In June, first individuals with mature gonads were present in the sampled population. 

Ripe individuals were also present in July, with a greater percentage of males in this stage that seems to 

be rather short. Spawning started between July and August 2015, at temperatures between 24–26°C 

and lasted longer predominant in females. As observed from this 12 month study, females were slightly 

advanced in reaching maturation stage. Due to the lack of a clear spent stage, our results indicated a 

long preparation of gonads (early and late development stages) and a short period of maturation which 

rapidly lead to gonad release, followed by a longer spawning period.   

Figure 4.3.19. Monthly relative frequencies of gonad developmental stages of Glycymeris pilosa and mean monthly 

temperature at Pašman (a) females, (b) males.  

 

The MGI indicated a slight advancement of female gonadal stages although both female and male cycles 

showed a highly significant synchronicity (r = 0.70, P < 0.05) (Fig. 4.3.20). The lowest MGI values in 2014 

preceded the lowest temperatures whereas the highest MGI values (barely exceeding 4) were identified 

in May and June 2015 in both sexes, evidencing the short length of the ripe stage. The onset of gamete 

release took place with an increase of temperatures which reached the highest values in August 2015 
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(Fig. 4.3.19). Gonadal neoplasia in histological preparations was observed in many analyzed individuals 

of this species. 

 

Figure 4.3.20. Mean monthly gonad index 

values of Glycymeris pilosa and mean 

monthly temperature (circles); males 

(squares), females (triangles). 

 

 

 

 

 

4.4. Growth 

The mixing line equation developed for the study area had an R2 = 0.95 (Fig 4.4.1) enabling a high 

confidende estimation of δ18Owater from monthly salinity measurements. The average δ18Owater value 

from all 30 measured samples was -0.94±3.24‰. Reconstructed δ18Owater values from Pag ranged from 

0.45 to 1.28‰ whereas those from Cetina ranged from -0.12 to 1.34‰. 

 

Figure 4.4.1. Mixing line 

equation obtained from 

salinity and δ18Owater (‰) 

measurements. Grey-

shaded area represents the 

95% confidence interval.  
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4.4.1. Micromilling on the shell surface of Callista chione 

The shell stable isotope curves of all studied Callista chione shells showed distinct sinusoidal oscillations 

(Fig. 4.4.2). Seasonal δ18Oshell amplitudes of shells from Pag were fairly similar from -0.82 to 2.24‰ in 

AC1, from -0.78 to 2.25‰ in AC2 and from -0.77 to 2.46‰ in AC3. Those from Cetina showed a slightly 

larger variance, from -0.73 to 1.79‰ in CC1, from -0.91 to 1.71‰ in CC2 and from -0.84 to 1.51‰ in 

CC3. Distinct major growth lines were visible on external shell surfaces and in cross-sections of C. chione 

permitting to determine the ontogenetic ages. Specimens from Pag lived for 3 to 6 years while those 

from Cetina were 4 years-old. Since specimens had different shell lengths and ages, amplitudes of 

annual δ18Oshell variation and distances within each annual cycle varied among individuals. In Fig. 4.4.2b, 

a significant shortening over the sampled transect became apparent in the spacing between maximum 

to minimum δ18O values reflecting a decrease in the shell growth rate through ontogeny, widely 

recognized in organisms which grow their shell by periodic accretion. The variation between seasonally 

depleted and enriched extremes is nearly defined by linear series, anticipating the seasonal variation in 

seawater temperature. Since depleted values represent the highest temperatures while enriched values 

are representative of the coldest periods, a wider amplitude was observed in individuals from Pag 

similar to larger mean annual seawater temperature variation observed at this site. The amplitudes of 

δ13Cshell values from Pag shells were quite similar and ranged from -1.20 to 0.03‰ in AC1, from -1.51 to -

0.16‰ in AC2 and from -0.42 to -0.06‰ in AC3. Those from Cetina ranged from -1.36 to 0.02‰ in CC1, 

from -1.02 to -0.07‰ in CC2 and from -1.08 to -0.21‰ in CC3. Correlations between both oxygen and 

carbon isotopes were performed to assess whether they exhibited any analogous seasonal evolution 

between their profiles. Significant negative correlations existed between δ18Oshell and δ13Cshell except for 

shell CC3 (Table 4.4.1). 

Table 4.4.1. Summary of stable isotope values determined in shells of Callista chione from Pag (AC1-AC3) and 

Cetina (CC1-CC3). All values are reported in ‰ (VPDB standard). Pearson correlation between δ18Oshell and δ13Cshell 

for each specimen at * P < 0.05 and ** P < 0.001. 

ID δ18Oshell δ13Cshell Pearson correlation 

Average Max Min Amplitude Average Max Min Amplitude R P 

AC1 0.58 2.24 -0.82 3.06 -0.58 0.03 -1.20 1.24 -0.723 < 0.001** 

AC2 0.53 2.25 -0.78 3.03 -0.78 -0.16 -1.51 1.35 -0.412 0.046* 

AC3 1.02 2.46 -0.77 3.22 -0.42 -0.06 -0.80 0.74 -0.438 0.025* 

CC1 0.39 1.79 -0.73 2.51 -0.57 0.02 -1.36 1.38 -0.528 0.001* 

CC2 0.11 1.71 -0.91 2.63 -0.52 -0.07 -1.02 0.95 -0.639 < 0.001** 

CC3 0.49 1.51 -0.84 2.36 -0.64 -0.21 -1.08 0.87 -0.189 0.318 

 



78 

 

The identification of the timing of shell growth band formation targeted a series of growth lines which 

were deposited between summer and early fall; these observations are likely the result of increasing 

shell growth rates during the summer followed by a waning of shell growth after the temperature 

maxima leading to a main growth deposition during this period (Fig. 3.5.1). 

Modeled δ18Oshell values at each site compared well with each other (Fig. 4.4.3). Aligning the time-axis of 

δ18Oshell derived-temperature curve to high resolution instrumental seawater temperatures using 

Equation 1 allowed the best fit placing data in a calendar time. The temperature amplitudes of annual 

δ18Oshell variation (Table 4.4.1) were revealed and the growth season was estimated to mainly occur 

between May and December. According to Equation 1, each 4.34°C change in temperature results in a 

one permil shift in shell carbonate, therefore, reconstructed temperatures of δ18Oshell values from 

individuals in Pag covered a range of 13.2–14°C while those from Cetina ranged from 10.2–11.4°C, 

representing a lower amplitude than measured seawater temperature (16.2°C in Pag; 13.7°C in Cetina).  

Reconstructed temperatures in Pag ranged from 13.9 to 28.2°C in AC1, 13.8 to 27.5°C in AC2 and 13.6 to 

26.9°C in AC3, whereas in Cetina ranges oscillated between 16.4 to 28.4°C in CC1, 16.7 to 27.7°C in CC2 

and 16.8 to 28.2°C in CC3. These values are within the range of maximum recorded temperatures which 

was 28.6°C at both sites. Minimum temperatures were 7.4°C at Pag and 10.9°C at Cetina (Fig. 4.4.4). 
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Figure 4.4.2. Isotopic composition of δ18O (grey circles) and δ13C (white circles) from sampled shells at each 

location. The oxygen data is presented on a reversed scale to simplify the interpretation in terms of temperature. 

Replicates from Pag (a) AC1, (b) AC2 and (c) AC3 and from Cetina (d) CC1, (e) CC2 and (f) CC3. Black circles 

represent the edges of the annual period used to calculate growth rates. 
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Figure 4.4.3. Alignment of each δ18Oshell values using the modeled δ18Oshell according to sampling sites (a) Pag and 

(b) Cetina.  

Based on the δ18Oshell alignment, estimation of growth rates was accomplished by considering one 

annual cycle, from August to July, except for AC3 which were calculated between July and June (Fig. 

4.4.5). 

 

Figure 4.4.4. Temporal alignment of reconstructed δ18Oshell temperatures from instrumental SST in (a) Pag and (b) 

Cetina. Dark shaded area represents the approximate period of growth line formation. Light shaded area 

represents a period of slow/negligible growth. 
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Data for monthly mean growth rates is presented in percentages showing the seasonal patterns of 

annual shell growth within a one year period. The highest growth rates occurred during the summer 

months, while a decreasing tendency was shown towards the winter and this started to increase in the 

following spring. Some differences between sites were observed. In Pag, decreasing growth rates were 

not as sharp as in Cetina, particularly during fall; similarly, the increasing growth rates during spring 

were uninterrupted in Cetina, while in Pag showed some decrease at the beginning of summer. Shell 

growth rates between January and April were extremely low or rather negligible at both sites, as 

supported from microstructure results (data not shown). 

 

 

Figure 4.4.5. Seasonal changes in the monthly shell growth rates (%) for each replicate of Callista chione at (a) Pag 

and (b) Cetina and corresponding temperature values (colored circles) at each site. 
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4.4.1.1. Correlating growth with environmental and biological variables 

The test the potential influence of environmental (temperature, salinity and precipitation) and biological 

variables (δ13C and C:N ratios from suspended particulate matter and GSI) on C. chione shell growth, we 

compared these set of data to estimated shell growth rates. 

Shell growth rates and temperature were positively correlated both in Pag (r = 0.84, P < 0.01) and Cetina 

(r = 0.94, P < 0.01) (Figs. 4.4.6 and 4.4.7). A stronger correlation in Cetina is evidenced by the decreasing 

shell growth rates between August and December and the increasing values between May and July, 

along with seawater temperature records. In comparison with the preceding and following months, the 

growth rates in October 2014 were remarkably high. This month was characterized by unusual high 

temperatures following a colder and rainier September than previous years. Salinity and precipitation 

did not significantly correlate with shell growth rates (all at P > 0.05) (Figs. 4.4.6 and 4.4.7). 

By comparing shell growth rates with GSI values, fast shell growth rates occurred in specimens from Pag 

during December, coinciding with the beginning of gametogenesis. This would suggest a low energy 

investment on gonadal mass, as shown by low GSI values (Fig. 4.4.8), although no significant correlation 

was observed between both shell growth rates and GSI (r = -0.50, P > 0.05) (Fig. 4.4.6). In contrast, at 

Cetina specimens a higher investment in gonadal development was shown in both November and 

December which could likely explain the lower shell growth rates observed these periods, as 

strengthened by the high negative correlation between both variables (r = -0.83, P < 0.01). Despite the 

synchronous timing of negligible shell growth, some differences between sites were also observed in 

relation to the gonadal production. In Pag, June was the month with the highest GSI values prior to the 

spawning timing and showed lower growth rates than the previous month. After spawning, both sites 

showed increasing percentages in shell growth rates which were tightly coupled to temperature and 

food supply. The temporal variation in BMI was not correlated to shell growth rates. 

The carbon isotope and C:N molar ratios measured from the suspended particulate matter were used as 

food quality indices. δ13CSPM showed a positive correlation with shell growth rates at Pag (r = 0.64, P < 

0.001) but none from Cetina (all at P > 0.05), whereas the C:N ratio was not significantly correlated to 

shell growth rates at any site (all at P > 0.05). 
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Figure 4.4.6. Scatter-plot matrix displaying the correlation output in Pag between monthly mean values of growth 

rates (GR), temperature (T), salinity (S), body mass index (BMI), gonadosomatic index (GSI), precipitation (Prec), 

δ13CSPM (δ13C) and C:NSPM molar ratio (C:N). 
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Figure 4.4.7. Scatter-plot matrix displaying the correlation output in Cetina between monthly mean values of 

growth rates (GR), temperature (T), salinity (S), body mass index (BMI), gonadosomatic index (GSI), precipitation 

(Prec), δ13CSPM (δ13C) and C:NSPM molar ratio (C:N).   
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Figure 4.4.8. Combined gonadosomatic index (GSI) and mean growth rates of C. chione within a year period in (a) 

Pag and (b) Cetina 

 

4.4.2. Micromilling in the cross-sectioned valve of Glycymeris bimaculata 

Geochemical analysis in adult specimens of Glycymeris bimaculata through continuous-sampling also 

revealed sinusoidal shell δ18Oshell curves (Fig. 4.4.9). Complete annual intervals were covered for AB1, 

AB3 and CB2, whereas CB1 and CB3 covered half curves between maximum and minimum δ18Oshell 

values. Seasonal δ18Oshell amplitudes from Pag shells were from -0.49 to 1.84‰ in AB1 and from -0.47 to 

1.67‰ in AB3. Those in analyzed shells from Cetina ranged from -0.83 to 2.24‰ in CB1, from -0.33 to 

1.54‰ in CB2 and from -0.57 to 2.44‰ in CB3. 

The seasonal δ13Cshell amplitudes from Pag ranged from 0.03 to 1.25‰ in AB1 and from -0.52 to 0.38‰ in 

AB3. In analyzed samples from Cetina these amplitudes ranged from 0.35 to 1.77‰ in CB1, from 0.33 to 

0.95‰ in CB2 and from 0.49 to 1.72‰ in CB3. Correlations between δ18Oshell and δ13Cshell varied between 

specimens, showing a significant positive correlation in AB3 and negative correlations in the other 
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sampled shells, although only in CB1 and CB3 these were significant (Table 4.4.2). These last results from 

Cetina specimens could be biased since they include just half of the annual signal. 

 

 

Figure 4.4.9. Isotopic composition of δ18O (grey circles) and δ13C (white circles) from sampled shells at each 

location. The oxygen data is presented on a reversed scale to simplify the interpretation in terms of temperature. 

Two replicates from Pag (a) AB1 and (b) AB3 and three from Cetina (c) CB1, (d) CB2 and (e) CB3. Black circles and 

arrows represent the edges of the annual period used to calculate growth rates. 

 

Macroscopic observations of growth lines and growth increments on the cross-sectioned valves was 

sometimes indiscernible and they were easier to distinguish in the hinge region (Fig 4.4.10). Estimated 

age of individuals from Pag was ca. 16 (AB1) and 25 (AB3) years whereas those from Cetina were aged 

10 (CB1), 13 (CB2) and 13 (CB3) years.  
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Figure 4.4.10. Mutvei staining to age Glycymeris bimaculata shells from hinge cross-sections. Specimen IDs: (a) 

AB1, (b) AB3, (c) CB1, (d) CB2 and (e) CB3. 

The curve-fitting algorithm on δ18Oshell values had R2 of 0.85 and 0.91 from Pag specimens (AB1 and AB3, 

respectively) and 0.93, 0.73 and 0.93 from Cetina specimens (CB1, CB2 and CB3, respectively). These 

values were used to firstly align them with modeled δ18Oshell values derived from δ18Owater reconstructions 

per each month (Fig. 4.4.11).  

Reconstructed temperatures in Pag ranged from 13.4 to 27.1°C in AB1 and 15.2 to 26.0°C in AB3, 

whereas in Cetina ranges oscillated between 14.0 to 28.9°C in CB1, 17.4 to 26.5°C in CB2 and 13.5 to 

27.7°C in CB3. These values are within the range of maximum recorded temperatures which were 28.6°C 

at both sites. Minimum temperatures were 7.4°C at Pag and 10.9°C at Cetina indicating a growth 

shutdown during the coldest period of the year (Fig. 4.4.12). 

Table 4.4.2. Summary of stable isotope values determined in adult shells of Glycymeris bimaculata from Pag (AB1 

and AB3) and Cetina (CB1-CB3). Juvenile shell values of G. bimaculata are also included (AB68 and AB69). All values 

are reported in ‰ (VPDB standard). Pearson correlation between δ18Oshell and δ13Cshell for each specimen at * P < 

0.05 and ** P < 0.001. 

ID δ18Oshell δ13Cshell Pearson correlation 

Average Max Min Amplitude Average Max Min Amplitude R P 

AB1 0.28 1.84 -0.49 2.33 0.55 1.25 0.03 1.22 -0.164 0.207 

AB3 0.39 1.67 -0.47 2.14 -0.01 0.38 -0.52 0.90 0.604 <0.001** 

CB1 0.25 2.14 -0.83 2.98 1.16 1.77 0.35 1.43 -0.775 <0.001** 

CB2 0.48 1.54 -0.33 1.87 0.63 0.95 0.33 0.62 -0.172 0.308 

CB3 0.65 2.44 -0.57 3.01 0.96 1.72 0.49 1.22 -0.519 <0.001** 

AB68 0.71 2.07 -0.61 2.68 0.78 1.04 0.57 0.47 -0.359 <0.189 

AB69 0.72 2.62 -0.73 3.35 0.71 1.23 0.17 1.06 0.256 0.172 
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Figure 4.4.11. Alignment of each δ18Oshell values using the modeled δ18Oshell in (a) Pag and (b) Cetina. 

 

The estimation of growth rates was only possible for the two specimens from Pag which covered a 

complete annual period with sufficient high resolution. Periods with the highest growth in AB1 were 

June with 13.6%, August with 22.7% and July with 29.5%. In shell AB3, the highest growth rate periods 

were May with 16.1%, July with 22.6% and June with 25.8%. Months with the lowest shell growth were 

November with 4.5 and 6.5% and December with 4.5 and 0% for AB1 and AB2, respectively. The CB2 

specimen from Cetina suggested June and July to be the months with the highest shell growth rates, 

although a more detailed study of this and other replicates is needed. Therefore, statistical analysis with 

environmental and biological indices were not performed due to lack of enough specimens to 

corroborate these results. Notwithstanding, based on the availability of environmental and biological 

data, some relationships can be drawn which are discussed further on. 

 



89 

 

 

Figure 4.4.12. Temporal alignment of reconstructed δ18Oshell temperatures from instrumental SST in (a) Pag and 

(b) Cetina. Shaded area represents a period of slow/negligible growth. 

 

Oxygen and carbon isotope values obtained from drilled samples in two G. bimaculata juveniles are 

displayed in Table 4.4.2. There were no significant correlations between intra-annual isotopic values (all 

at P > 0.05). Based on these results and in macroscopic observations of the growth line formation, this 

took place around the δ18Oshell minima in both sampled three year old specimens. The timing of growth 

line formation was representing the highest temperatures in 2 (AB68) and 3 (AB69) consecutive years 

(Fig. 4.4.13). 
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Figure 4.4.13. Isotopic composition of δ18O (grey circles) and δ13C (white circles) in two Glycymeris bimaculata 

juvenile shells (a) AB68 and (b) AB69 from Pag site. Scale bar 50 mm. The oxygen data is presented on a reversed 

scale to simplify the interpretation in terms of temperature. 

 

An estimation of metabolic carbon in G. bimaculata shells was performed. Although the full annual 

variability of δ13CDIC could not be captured throughout the year, the average of 4 samples (0.02‰) 

collected between July and October 2015 was used and calculated in Equation 3 (see 3.5.2). The δ13Cshell 

represents the mean composition of three replicated shells (CB1-CB3; 0.92), εshell-HCO3- of 2.7‰ and δ13C 

from digestive gland tissue of sampled specimens (-23.45‰) was used to represent δ13CM. This organ 

was used since it has the highest carbon incorporation compared to gonad > adductor muscle (Paulet et 

al., 2006). Therefore, it is the best organ to use so δ13C variations, which are linked to organ activity and 

growth, are removed. 
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5. DISCUSSION 

 

5.1. Feeding 

5.1.1. Characterization of food sources 

In coastal zones, marine particulate organic matter is composed of a mixture of living and detrital 

material derived from plankton, bacteria, fecal pellets or zooplankton remains such as exoskeletons 

(Savoye et al., 2012; Berto et al., 2013). To our knowledge, this is the first study investigating the 

biochemical composition of particulate matter at an interannual scale (17 months) in the central eastern 

Adriatic. Additionally, the biochemical composition of suspended particulate matter was measured at an 

intra-annual scale (12 months) in Pašman. Results from parameters measured in the water column 

showed negligible spatial differences in SPM, Chl a, BSi, lipids and C:N molar ratios and isotopic 

composition (δ13C, δ15N) signatures but revealed large temporal variations. These variations were 

consistent with the environmental conditions in the area (i.e. light, temperature) which are known to 

influence, among others, isotopic fractionation (Fry, 2006). The observed temperature and salinity 

values at all study sites are typical for coastal eastern Mediterranean waters (Vilibić et al., 2015). 

 

5.1.1.1. Identifying the origin of organic matter through stable isotope analysis 

As indicated by the δ13C pattern, a mixed terrestrial-riverine and marine OM origin characterized SPM, 

typical of these types of environments (Fig. 4.2.1c) (e.g. Savoye et al., 2003; Berto et al., 2013). 

Isotopically lighter carbon was observed during winter and spring (down to -26‰) likely due to high 

precipitation events associated with river discharge. In contrast, more enriched δ13C values during 

summer and fall (up to -22.8‰) were closer to those of coastal marine environments (~-22‰ in marine 

phytoplankton) (Fry et al., 1984; Harmelin-Vivien et al., 2008) suggesting a progressive mixing of 

terrestrial and marine materials after phytoplankton blooms.  

 

Few previous studies have reported the isotopic composition of sediment in the Adriatic Sea, and these 

were conducted in its northern part (Ogrinc et al., 2005) or in the open sea (Faganeli et al., 1994). Unlike 

SPM, large spatial rather than temporal variations were shown in the carbon isotope values, which 

averaged -22±0.4‰ at Pag and -26±0.2‰ at Cetina. These ranges are within those reported in Ogrinc et 

al., (2005), Faganeli et al., (2009) and Žvab-Rožić et al., (2015) which studied locations that receive both 

marine and terrigenous origin inputs as also shown in other estuarine influenced coastal systems (e.g. 

Ramaswamy et al., 2008). The differences between SPM and Sed pools at each site may reveal 
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differences in organic matter sources throughout the year, suggesting a shift of available material at the 

water-sediment interface. In Pag, a more enriched δ13C in the upper sediment layer could be attributed 

to resuspension of fresh material induced by Bora wind events or to microphytobenthic production, 

which could significantly contribute in other areas in the Adriatic Sea (Šestanović et al., 2009). The Bora 

is a katabatic wind, most common in winter, blowing from the northeast with gusts up to 200 km/h, 

inducing big waves and resuspension in the Adriatic Sea. These events are particularly strong and 

recurrent in this area (Surić et al., 2015), enhancing recycling of nutrients (Berto et al., 2013), hence 

production. Also, the degradation of 13C-enriched mixture of organic matter such as macroalgae detritus 

could be associated with this isotopic carbon enrichment (Dias et al., 2016). In contrast, the proximity to 

the river mouth suggests that the influence of terrestrial matter in Cetina could be responsible for the 

13C-depleted signal as it occurred in other estuarine areas (Hedges et al., 1997).  

 

Interpreting the nitrogen isotope signal is not straightforward due to the potential contribution of more 

than one nitrogen source, namely N2, NO3
-, NH4

+ or DON (e.g. Berto et al., 2013; Currin et al., 1995; 

Peterson, 1999). The range of the δ15N signature of phytoplankton and bacterioplankton is of the order 

of -2 to 5‰ (Rees et al., 2006). The oligotrophic nature of the Eastern Mediterranean basin is 15N-

depleted in OM (Pantoja et al., 2002; Sachs & Repeta, 1999) as it is in other oligotrophic areas, e.g. 

Sargasso Sea (Montoya et al., 2002). The δ15NSPM ranges in Pag (1.6 to 6.1‰), Cetina (2.5 to 5.5‰) and 

Pašman (3.1 to 5.9‰) were within those previously reported for the Adriatic (Žvab et al., 2010; Žvab 

Rožič et al., 2015; Faganeli et al., 2009) and other Mediterranean areas (Vizzini & Mazzola, 2006; Carlier 

et al., 2007; Carlier et al., 2008). The mixture of freshwater and marine water was expected to occur in 

all study sites. In Cetina, there is the influence of the river, whereas in Pag and Pašman the influence 

comes from the underground freshwater discharges typical of the karstic nature of the area (Hamer et 

al., 2010; Surić et al., 2015). This is supported by the significant temporal variation in ~4‰ units 

observed along the sampled period where peaks (Figs. 4.2.1d, 4.3.2.1) coincided with months with high 

precipitation events (Fig. 4.1) which potentially enhanced this enrichment. These episodic peaks might 

be related to a higher river discharge (Cetina area) and to pulses of underwater springs (characteristic 

from Pag and Pašman areas) (Surić et al., 2015) which seem to increase the nitrogen isotopic 

composition. The influence of karstic springs on SPM has also been reported in a Mediterranean lagoon 

with δ15N values of 4.9‰ (Carlier et al., 2015), and in environments associated with pristine soils and 

terrestrial plant organic matter (Peterson et al., 1987). Further, bacteria, zooplankton and fecal pellets 

have greater 15N/14N ratios than phytoplankton (Minagawa & Wada, 1984; Vander Zanden & 

Rasmussen, 2001); therefore a higher content of degraded phytoplankton material (Harmelin-Vivien et 

al., 2008) could increase the signal in months with higher δ15NSPM values. 
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In the sediment layer, more depleted and variable δ15N values were observed at Pag (ranging from 3.9 

to -2.3‰) in contrast to more constant but also relatively low values in Cetina. This is probably 

supported by a rather constant discharge from the Cetina river throughout the year (Bonacci & Roje-

Bonacci, 2003), averaging 2.3±0.2‰, similar to those in Mediterranean estuarine areas (Carlier et al., 

2007). Relatively low δ15N values in organic matter deficient sediments, as indicated by light δ13C in 

Cetina, have been attributed to the diagenetic alteration of nitrogen isotopic ratios in the presence of 

oxygen (Sachs et al., 1999). However, the present results cannot test this hypothesis. In oligotrophic 

water bodies, diazotroph biomass is responsible for atmospheric nitrogen fixation (Rees et al., 2006; 

Pantoja et al., 2002; Wada et al., 2012), particularly by blue-green algae (Currin et al., 1995; Minagawa & 

Wada, 1986). Studies of cultured cyanobacteria revealed that nitrogen isotope ratios ranging from -1.5 

to -3.0‰ during N2 fixation were associated with high δ13C in cyanobacteria cells (Wada et al., 2012). 

Such negative values were found in the sediment samples from Pag. Additionally, studies of 

cyanobacteria in sedimentary organic matter in the NW Mediterranean with δ15N ranges from -2 to 2‰ 

support this explanation (Kerhervé et al., 2001). Also, in the Eastern Mediterranean δ15N values ~-2‰ 

are suggested to be a result of remineralization of organic matter (Möbius, 2013). Low δ15NSed could also 

be attributed to the excess of P from enhanced riverine inputs and changes in the composition of 

sediment (Krom et al., 2004). Within the overall assumptions, these results support the hypothesis that 

more depleted and variable δ15NSed values in Pag were likely associated with benthic bacteria, probably 

related to diazotroph biomass, suggesting that nitrogen fixation is a main contributor to the δ15N signal 

in PON. Other reports of anthropogenic influence reported δ15N values > 10‰ in the particulate matter 

(Cifuentes et al., 1988; Carlier et al., 2008; Puccinelli et al., 2016; Žvab Rožič et al., 2015; Liénart et al., 

2016) which are far outside the ranges observed in this study for both pools. 

 

5.1.1.2. Biogenic parameters as indicators of particulate matter quality 

Another indicator commonly used to identify degraded marine organic matter and distinguish marine 

from terrestrial OM is the C:N Redfield ratio, which associates the value of ~6 with live phytoplankton 

(Redfield, 1958). The presence of fresher material in Pag was suggested by the constant C:NSPM values 

close to those of marine derived phytoplankton (4 ─ 8) (e.g. Schubert & Calvert, 2001) throughout the 

year. At Cetina, C:NSPM ranges from 7 to 11 represented a mixture of phytoplankton with marine 

degraded and/or terrestrial OM as seen in other estuarine systems (Hedges et al., 1997; Dias et al., 

2016; Savoye et al., 2003). The presence of several C:N ratio peaks (e.g. October 2014, December, 

February and June 2015; Fig. 4.2.1b) was most probably related to resuspension events, supported by 

the coincidence with high suspended particulate matter values, which may reflect the incorporation of 
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degraded material into the water column. At Pašman, C:NSPM ranges were closer to those from Cetina 

(7.8–11.6) but the temporal pattern resembled that in Pag, except for a peak shown in spring. The low 

relationship between C:NSPM and biogenic silica at all sites strengthens the view that fresh siliceous 

phytoplankton is not a main constituent of the OM in the water column and that other inputs of organic 

carbon, e.g. terrestrial, or degraded marine material may be more abundant. Bacterial cells have lower 

C:N than phytoplankton due to preferential mineralization of N (Newton et al., 1994); therefore, in 

periods of food scarcity, C:N ratios may decrease due to bacterial presence. 

 

The sediment at Pag showed a large temporal variation in the C:N ratio with lower values during fall and 

winter suggesting higher abundance of bacteria during those months, on the same direction as the N 

isotopic signature (Fig. 4.2.1b,d). The spring peak observed at this site strongly suggests that an 

important terrestrial input took place during this season which is further supported with FA results 

(discussed in the next section). In Cetina, C:NSed ratios were more constant averaging 7.7 and a high 

percentage of biogenic silica was observed, suggesting a relatively high concentration of fresh OM with 

diatom abundance. Contrastingly, the FA marker for diatom was quite low (as discussed in the next 

section). Therefore, the presence of empty frustules better explain the high BSi values and gives further 

support to the presence of bacteria in the OM pool. This is supported by the fact that the low %C and 

%N in the sediment are in the range of those reported in the Adriatic, 0.5-1.3 %C and 0.1-0.17 %N 

(Ogrinc et al., 2005) and 0.02-0.15 %N (Matijević et al., 2009), corroborating the poor nutritional quality 

of the sediment in this oligotrophic basin.  

 

In addition, the POC/Chl a ratio was explored, finding that all values were > 200 indicating the strong 

presence of heterotrophic/mixotrophic organisms (Galois et al., 1996; Bentaleb et al., 1998) as reported 

in estuarine areas in the Adriatic Sea (Šolić et al., 2015). Overall, the temporal variations observed at 

local scales are common in temperate coastal ecosystems, especially within the influence of river mouth 

areas (Cresson et al., 2012; Berto et al., 2013). 

 

5.1.1.3. Identifying the composition of organic matter through fatty acid analysis  

Along with SI estimates, FA patterns showed seasonal changes within the pool of SPM elucidating 

different sources of organic matter at both analyzed sites, Pag and Cetina. The most important 

components of SPM and Sed lipids were 14:0, 18:0, 18-1(n-9), 20:1, 20:0 and detrital FA (Fig. 4.2.2). 

Within SFA, C20:0 was higher during winter and this FA has been linked to bacteria associated with 

detrital matter (Galap et al., 1999), which were more abundant in Pag, coincident with SI results. The 
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high proportion of MUFA, 16:1, 18-2(n-6) and detrital FA in Cetina suggested that terrestrial sources 

predominate in the OM in SPM also supporting the observations of SI results. Usually, the FA marker 

C18:2(n-6) is associated with terrestrial sources (Budge et al., 1998; Parrish et al., 1996; Fischer et al., 

2014), seagrass (Kharlamenko et al., 2011), protozoa (Zhukova et al., 1999) and even agricultural 

products (Napolitano et al., 1997). This FA marker has also been associated with brown algae when 

coupled to higher concentrations of 18:3(n-3) (Li et al., 2002). In the present study this coupling was not 

observed; thus, brown algae are unlikely to be responsible for this marker increase, hypothesizing that 

seagrass, which is present at both sites but particularly in Cetina (pers. obs), might be responsible for 

the observed values. The FA 18:1(n-9) was particularly abundant during spring and summer, and besides 

its association with zooplankton (Sargent et al., 1988) it has also been related to cyanobacteria (Antonio 

et al., 2016b), again supporting the results of SI analyses. The best OM quality indicated by high PUFA 

concentrations took place during summer and was higher in Pag, in agreement with relatively low C:N 

and high BSiSPM values. Accordingly, phytoplankton represented by diatom (EPA) and dinoflagellate 

(DHA) markers were most abundant during this period and least abundant in the fall (Fig. 4.2.2).  

Herbivorous calanoid copepods markers were more abundant in Cetina during fall and winter, 

apparently following the phytoplankton peaks. The Chl a pattern from monthly values in this study, Chl 

a derived from satellite observations (Fig. S1), and data from previous studies in the eastern Adriatic, 

showed that the highest phytoplankton biomass develops during fall-winter and spring and is followed 

by summer stagnation (Ninčević-Gladan et al., 2015; Ninčević Gladan et al., 2009). In contrast, 

phytoplankton FA markers, δ13C, C:N ratios and BSiSPM values suggested that SPM is of better quality 

during spring and summer. Often, δ13C is positively correlated to Chl a concentrations (e.g. Miller & 

Page, 2012) indicating the limitations of having only monthly Chl a measurements in shallow coastal 

areas. These findings stress the importance of including a large suite of parameters to better assess the 

environmental characteristics, which change rapidly, particularly in shallow waters. The temporal 

mismatch between Chl a and the rest of the variables is most likely influenced by the high amount of 

resuspended material other than phytoplankton (e.g. bacteria and empty diatom frustules) that may 

obscure the phytoplankton Chl a signal. Increases of Chl aSPM during winter as observed in Cetina might 

be associated with river nutrient inputs (Antolić et al., 2010).  

These changes obviously affect the trophic behavior in bivalves which rely on potential food sources 

from the sediment as an alternative to the water column. Therefore, characterizing the chemical 

composition of sediment to identify potential food sources is an essential part of the assessment of their 

trophic ecology. For example, it is known that bivalves may largely feed on benthic microalgae (Kang et 

al., 1999; Page et al., 2003; Dubois et al., 2014; Navarro et al., 2016). Our results showed C18:0 and 

C16:0 as the most abundant FA in the sediment as seen in other estuarine (Boëchat et al., 2014; El-Karim 
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et al., 2016) and marine sediments (Volkman et al., 2007); however, they have been considered 

ambiguous biological markers of microalgae (El-Karim et al., 2016).  

 

The highest contribution of terrigenous, carnivorous and herbivorous calanoid copepod markers to Sed 

was observed at Pag, contrasting with the results from SPM, and suggesting that Sed provides a major 

fraction of these sources to higher level consumers. Interestingly, the highest abundance of PUFA (in 

very low concentrations ~2.7%, annual mean) and MUFA took place during spring and summer, 

especially in Pag. This temporal pattern coincided with that observed in the water column indicating an 

abundance of fresh material sources in both pools, and an effective pelagic-benthic coupling, whereas 

the winter increase in SPM was not reflected in Sed. One possible explanation could be the efficient 

uptake of fresh material from the water column by consumers in a period of relatively less available 

food. Another explanation could be the transport to other areas (i.e. via currents) supported by the 

strong influence of Bora wind events during the winter time. Resuspension favors the availability of food 

sources to suspension-feeders and results in frequent exchanges between SPM and Sed pools (Carlier et 

al., 2007; Dubois et al., 2014). As a result, both pools consisted of a mixture of detritus, bacteria, 

phytoplankton and zooplankton. 

 

The combination of SI and FA profiles described an alternation between a freshwater dominated system 

in winter and a marine-water dominated system in summer, as seen in the Kowie estuary in South Africa 

(Antonio et al., 2014). Indeed, the particulate matter in Pag would seem to be of better quality, 

indicated by the abundance of EFA within PUFA in both pools and by the lighter values of δ13C and 

reduced SFA observed in the sediment. However, the nitrogen isotopic signature better distinguished 

the sources contributing to the organic matter pool at each site indicating that it is a better tracer of 

environmental changes than the carbon isotope (Fig. 4.2.4a). Cyanobacteria seemed to play a major role 

in Pag where more 15N-depleted values clearly separated it from Cetina; however, detrital FA showed 

that bacteria were abundant in both pools at both sites, indicating their importance as a food source 

(Šestanović et al., 2009; Galois et al., 1996). The combined assessment of the pelagic and benthic pools 

is necessary for the comprehensive analysis of the functioning of marine ecosystems and considerably 

improves our understanding when consumers are incorporated in the analyses (Danovaro et al., 2001; 

Frangoulis et al., 2011; Braeckman et al., 2015). 
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5.1.2. Spatial and temporal variation in bivalve diet: C. chione and G. bimaculata 

study 

Few studies have included spatial and temporal fluctuations of biochemical parameters of particulate 

matter in combination with organism tissues to trace the contribution of different food sources to 

bivalve’s diet (e.g. Doi et al., 2005; Bergamino et al., 2014). This study revealed, for the first time, the 

isotopic composition of the digestive gland of the clam Callista chione and the cockle Glycymeris 

bimaculata, which showed a pronounced temporal variation in their diet at two sampling sites. The 

carbon isotopic variation appeared to be species-specific, with slightly more enriched values in G. 

bimaculata while large differences in the nitrogen isotope were site-specific, with more enriched values 

shown in Cetina (Fig. 4.2.4a,b). The temporal variation in δ13CDG was coupled to that in δ13CSPM, 

indicating that bivalves adjusted their dietary shifts depending on the availability of food in SPM (Figs. 

4.2.1, 4.2.4); this coupling suggested that SPM is an important food source, in agreement with other 

studies (DeNiro et al., 1978; Riera et al., 1996; Kang et al., 1999; Kasai et al., 2004; Antonio et al., 2014).  

 

Results presented here showed a slight 13C-enrichment in DG with respect to SPM. Bivalves enrich their 

δ13C concentration in their tissues because they preferentially release the lighter 12C during respiration 

(Kharlamenko et al., 2001; Page et al., 2003; Kang et al., 1999). A mixed diet is often composed of plant 

material and sediment detritus in invertebrates (Bacon et al., 1998; Guest et al., 2004; Navarro et al., 

2016). In this study, G. bimaculata presented slightly heavier δ13C values than C. chione indicating that 

they feed more upon autochthonous particles (i.e. phytoplankton derived organic matter) and 

suggesting a stronger dependence on primary producers as seen in other studies (Kharlamenko et al., 

2008; Kang et al., 2003; Nadon & Himmelman, 2006; France, 1995). A shift towards more depleted 

values was observed for both species between February and June 2015, associated with terrestrial 

material with more depleted values in C. chione (-27‰) than in G. bimaculata (-25‰). Lighter δ13C 

values in organisms have often been associated with high lipid content (e.g. Thompson et al., 2000) 

since these are 13C-depleted (DeNiro et al., 1978; Focken et al., 1998). This association was not observed 

in C. chione where higher lipid concentrations and high C:N molar ratios, especially during summer and 

fall, were not coupled to low δ13C values (Figs. 4.2.3, 4.2.4). 

 

Similar findings have been reported in other filter feeders (Ezgeta-Balić et al., 2014; Lorrain et al., 2002) 

indicating that lipids might did not bias the present results. The more depleted δ13C values observed in 

C. chione do not seem to be specific for this species since the one stable isotope study in the literature 

for C. chione reported in the NW Mediterranean showed a more enriched isotopic signature than in 



98 

 

these results (δ13C: -19.4±0.5‰, δ15N: 4.7±0.4‰, n=5 in Carlier et al., 2007). In the present study, both 

species showed similar δ13C signals regardless of site, suggesting that there are regional differences 

across the Mediterranean Sea.  

 

A shift in δ15N of about 1‰ was identified between the Pag and Cetina populations (Fig. 4.2.4a). This 

δ15N variation was not associated with a different trophic level but with the different environments (i.e. 

food sources) which allowed a clear identification of bivalve population location. The ranges of δ15N in 

specimens from Cetina were consistent with those from other filter-feeders in the Adriatic Sea (Ezgeta-

Balić et al., 2014) whereas the lower δ15N signature from the Pag populations has not been reported for 

bivalves in the Adriatic Sea, suggesting particular environmental conditions in Pag. Seasonal changes in 

δ15N were coupled with those from the carbon isotope which showed more depleted values during 

winter and spring. In the Pag populations, these values were closer to those of Sed, suggesting an 

important contribution of Sed to their diet (further discussed in the next section). These results 

emphasize the need to conduct temporal studies in order to detect the rapid imprint that environmental 

changes have on animal tissues. The observed spatio-temporal intraspecific variation support the use of 

the digestive gland as a good indicator of fast turnover tissue (Deudero et al., 2009; Ezgeta-Balić et al., 

2014).  

 

FA profiles complemented the information on the spatio-temporal variation of the diet composition 

provided by isotopic signatures. For all populations, temporal differences in FA profiles were more 

evident than spatial ones as seen in Mytilus edulis from the western Mediterranean (Ventrella et al., 

2008). For all consumers, combined SFA and MUFA dominated the composition of the DG with 

percentages of around 90%, followed by PUFA and detrital material. Detrital material was found in 

similar concentrations in all bivalves with lower values during the summer. SFA concentrations in G. 

bimaculata were higher than those in C. chione (up to 84% TFA) especially during fall and winter, and 

these were higher at Pag. These SFA values were similar to those reported in Glycymeris nummaria (up 

to 82% TFA) (Najdek et al., 2016). These results suggest that SFA greatly contribute to the diet of 

Glycymeris sp. in the eastern Adriatic, unlike C. chione and other bivalves in the southern Adriatic 

(Ezgeta-Balić et al., 2012; Najdek et al., 2013). Within the SFA pool, the bacteria marker associated with 

detrital matter (C20:0) was slightly higher in G. bimaculata, especially at Cetina. PUFA were higher in C. 

chione especially during summer, particularly in Pag, even in periods with low PUFA abundance (Table 

S5). This difference suggests that C. chione has a preferential uptake of high quality food compared with 

G. bimaculata. Diatoms and dinoflagellates contributed most to the bivalves’ diet during spring and 

summer, particularly in C. chione. PUFA, especially EFA, are essential for growth but also a high degree 
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of unsaturation (UND) is characteristic of healthy mollusks (Dupčić Radić et al., 2014). Therefore, it can 

be inferred that C. chione has a better condition than G. bimaculata. Herbivorous calanoid copepod 

markers identified this group as a main component in the bivalves’ diet especially during spring and 

summer. Since oleic acid, a marker of zooplankton, was more abundant in C. chione, zooplankton seems 

to be a preferential food source for this bivalve. There were no large changes in the proportions of 

PUFAs, EFAs and bacterial FAs between sites suggesting that the general quality of food sources was 

similar but slight differences were shown between species.  

 

Overall detritus, diatom, dinoflagellate, zooplankton and EFA markers were the most abundant 

components in analyzed bivalves what is in agreement with other studies in the south-eastern Adriatic 

Sea. In these studies, other filter-feeders such as Mytilus galloprovincialis, Ostrea edulis and Modiolus 

barbatus (Ezgeta-Balić et al., 2012), Pinna nobilis (Najdek et al., 2013), Arca noae (Ezgeta-Balić et al., 

2012; Dupčić Radić et al., 2014) and G. nummaria (Najdek et al., 2016) revealed the ingestion of a mixed 

diet. The higher concentration of lipids in bivalves coincided with those months with the best indicators 

of food quality in SPM. Analogously, lipid concentrations in C. chione showed a sharp decline between 

August and September 2014, potentially linked with early gametogenic stages and the building up of 

gonadal storage (Fig. 4.2.3). In G. bimaculata populations, results are less pronounced but seem to 

support the same hypothesis; these observations are in line with other studies (Chu & Greaves, 1991) 

since it is known that large oocytes are enriched in lipids (Gabbott, 1975). 

Callista chione fed more upon fresher material than G. bimaculata which relied largely on bacteria-

derived detritus, as observed in other species of the same genus, Glycymeris glycymeris (Galap et al., 

1999) and Glycymeris nummaria (Najdek et al., 2016). The importance of bacteria in the bivalve diet has 

also been reported in other shallow coastal areas (Kang et al., 2003; Antonio et al., 2012) corroborating 

the importance of heterotrophic bacteria contributing to the carbon cycle through the microbial loop in 

oligotrophic waters such as the Adriatic Sea (Šantić et al., 2013). 

 

5.1.3. Contribution of food sources to bivalve diet and feeding niche: C. chione 

and G. bimaculata study 

To quantify food web relationships, estimates of the enrichment/depletion in δ13C and δ15N values 

between consumer and prey, known as trophic fractionation (Vander Zanden et al., 2001) or trophic 

enrichment factor (TEF) are required. In marine systems it is often assumed that a consumer is 

isotopically enriched relative to its food source (Post, 2002; Minagawa et al., 1984) although in benthic 

communities, the trophic fractionation between primary producers and consumers is highly variable and 
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unpredictable (Nadon et al., 2006). Here, results showed a slight 13C-enrichment but 15N-depletion in the 

signal between consumers and SPM and no clear relationship between consumers and Sed. A two 

source mixing model was used to elucidate the contribution of each source to the diet of the bivalves 

through time (Fig. 4.2.5). Often, SPM signatures are assumed to be relatively constant in space and time, 

leading to erroneous outputs and ecological misinterpretations (Miller et al., 2012). To avoid biased 

results, this temporal and spatial variation was integrated in the mixed model. Although TEFs vary 

among tissues and through time (Paulet et al., 2006), common enrichment factors for benthic 

invertebrates have been uniformly used (McCutchan et al., 2003) due to the lack of species-specific 

studies in our target individuals; therefore, these enrichment factors were used for the whole sampling 

period as the best approach. Based on these results, the contribution of Sed dominated in the 

populations from Pag with a slight contribution of SPM during summer when a major concentration of 

fresh material was available in the water column. In contrast, SPM was the main contributor to the diet 

composition at Cetina especially for G. bimaculata (> 97%). Interestingly, the highest contribution of Sed 

to this species took place in August 2015, whereas for C. chione, the opposite pattern was observed 

precisely in this period (Fig. 4.2.5). This contrasting figure suggested that in August 2015 there was a 

potential peak of available fresh material upon which C. chione largely fed and which did not greatly 

influence the nutritional resources of G. bimaculata.  

 

Dual isotope and fatty acids analyses characterized each site as different feeding niches, and this 

difference was more evident with fatty acids results (Fig. 4.2.7b). Both species showed a similar 

temporal isotopic variation with more enriched values during summer and fall and more depleted values 

during winter and spring. The turnover time integrated in the digestive gland (days to weeks) is short 

enough to reflect the characteristics of the environment, in our case, the higher phytoplankton 

concentration during spring and summer, as discussed earlier. The isotopic feeding niche showed an 

overlap only in November and March at Cetina, revealing different composition of food sources during 

the rest of the year, whereas at Pag, the overlap was evident during fall and winter. A larger 

contribution of Sed was clear in the Pag populations, supported by the 15N-depleted values in DG. This is 

not unusual since isotopic ratios of animals are closely related to their food (DeNiro et al., 1978; 

Minagawa et al., 1984; Post, 2002; Antonio & Richoux, 2016a). At Pag, the highest niche plasticity was 

observed for C. chione suggesting its ability to consume more isotopically diverse food sources than G. 

bimaculata. Niche plasticity allows the reduction of intraspecific competition when food is scarce (Gutt, 

2006) by consumption of different fractions of POM (Riera, 2007). The narrower isotopic range in G. 

bimaculata would suggest that both species compete for food in a period of food scarcity; however, the 

fatty acid feeding niche revealed that despite the overlap, G. bimaculata is more opportunistic. 
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This behavior matches with the trophic activity of C. chione which appears to be more selective within 

the available organic pool. Morphological differences could also play a role in the selection of food 

particles. The presence of a siphon in C. chione could restrict its ability to pick particles from the 

environment. In contrast, little is known about the feeding habitats of G. bimaculata which has no 

inhalant siphon and potentially has the ability to feed also upon particles in the interstitial water. Food 

quantity and quality may affect different bivalve species in different ways since they (i) might assimilate 

food at different rates (Bacon et al., 1998), (ii) have a different biochemical composition in their soft 

tissues as a consequence of changes in food supply (Baker & Hornbach, 2000) or (iii) relocate differently 

the assimilated food towards different functions (Lewis & Cerrato, 1997). The similar isotopic and C:N 

ratio patterns observed between populations at each site may indicate that resuspension events make 

benthic diatoms available for consumers (e.g. Miller et al., 1996) ensuring the availability of organic 

material in SPM throughout the year. Therefore, both species have the capacity to ingest particles from 

both SPM and Sed pools. This type of intraspecific variation was also observed in Crassosstrea gigas in 

France (Riera et al., 1996). SPM is a dynamic pool of autochthonous and allochthonous material thus, to 

facilitate the identification of the origin of SPM, multiproxy approaches have been used, such as in the 

Yura estuary (Antonio et al., 2012).  

 

In the present study, the combination of a dual isotope model with a set of biochemical parameters (FA, 

Chl a, C:N ratio, and BSi) gave insights into the origin of food sources. It can be concluded that each 

species obtained their carbon from different sources and that the nitrogen isotopic composition in the 

Sed strongly separated populations based on δ15NDG (Fig. 4.2.7a). The larger dispersion of FA in G. 

bimaculata could be linked to a wider range of bacteria FA markers than in C. chione. Although the 

detrital contribution is quite high in both species, bacteria just constituted a small proportion of the diet 

in C. chione in other areas (Charles et al., 1999). Bivalves are proficient at sorting material for its 

consumption (reviewed in Ward & Shumway, 2004). Glycymeris bimaculata might act as an 

opportunistic feeder in this respect, incorporating resuspended particles with more detrital-derived 

material such as seen in P. magellanicus (Shumway et al., 1987). Bacteria seems to contribute 

significantly to bivalve nitrogen requirements in periods of food scarcity (Langdon & Newell, 1990), 

which is likely the case in the present study especially for Pag populations. Therefore, both species have 

the ability to switch from suspension to deposit feeding depending on the environmental conditions, as 

seen for Abra alba (Sampaio et al., 2010).  
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5.1.4. Spatial and temporal variation in bivalve diet: G. pilosa study 

Spatio-temporal fluctuations in the isotopic composition of the digestive gland of Glycymeris pilosa were 

also evaluated. Analysis of stable isotopes revealed a pronounced temporal variation in the diet of G. 

pilosa. The isotopic variation appeared to be site-specific, with more enriched values of both carbon and 

nitrogen isotopes in Pašman population (Fig. 4.2.9). This site-specificity was also apparent when 

comparing G. pilosa values from Pag to those of previously studied species in the same location. The 

temporal variation in δ13CDG was coupled to that in δ13CSPM, indicating that G. pilosa also adjusted their 

dietary shifts depending on the availability of food in SPM (Figs 4.2.9, 4.2.11). For both C. chione and G. 

bimaculata, these results showed a slight 13C-enrichment in DG with respect to SPM (up to 2‰). 

 

On the other hand, G. pilosa from Pašman presented significantly heavier δ13C values, up to 3‰, than in 

Pag specimens. These results indicated that despite the similar δ13CSPM between sites, the population in 

Pašman fed more upon autochthonous particles. This is corroborated by C:NDG ratio ranges in this 

population (5.4–7.4). One hypothesis could be associated with reduced inter-specific competition in the 

area, but since other bivalve species are present in the Pašman Channel, i.e. Venus verrucosa, Arca noae, 

Pinna nobilis or C. chione (Peharda et al., 2009); pers. obs) this is probably not the reason. The δ15NDG 

ranges in the Pašman population were also the highest observed in all studied populations, suggesting 

that they did not largely rely on heterotrophic benthic bacteria. Although sediment samples were not 

analyzed at this site, δ15NDG resembled δ15NSPM likely indicating that suspended particulate matter was 

the main nitrogen source (Fig. 4.2.12). Since lower δ15N values in bivalve tissues have also been 

associated with lower metabolic rates when compared at different depth gradients (Nerot et al., 2012), 

one could suspect that the G. pilosa population from Pašman has a higher metabolic activity than the 

population in Pag. However, both are very shallow sites with similar characteristics, with specimens 

collected from Pag at 3‒5 m and from Pašman at 1–2 m, so this hypothesis would poorly explain these 

differences. It is important to note the considerably higher concentration of lipids in the Pag population 

rather than in Pašman, indicating a lower concentration of carbon in the diet and suggesting reduced 

energy reserves in the later. In spite of this, both populations had higher concentrations than those 

observed in other bivalves from the southeastern Adriatic (Ezgeta-Balić et al., 2012). 
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5.2. Reproduction 

5.2.1. Reproductive cycle & temperature 

Environmental factors have a strong influence on reproduction in bivalves (e.g. Sastry & Blake, 1971; 

Gosling, 2003; Gaspar, 2004; Drent, 2004; Drummond et al., 2006; Gam et al., 2010) and this has been 

corroborated in the present work. Temperature and food availability are considered as the main factors 

triggering reproduction, most likely influencing distinct periods of the cycle (Gosling, 2003 and 

references therein). For many species, the initiation of gametogenesis is temperature dependent (Sastry 

et al., 1971; Bayne, 2009) whereas gonadal development requires a nutritional input to produce mature 

cells (Sastry, 1966; Iglesias & Navarro, 1991). However, this complex interplay between both factors is 

considered to be species-dependent (Gosling, 2003). In the present study, temperature played a 

significant role where the warmest period was mainly associated with spawning events. Based on 

previous information (see Section 5.1) the highest quality of food supply took place during spring and 

summer and monthly Chl a biomass values were quite similar among sites ranging from 0.2 to 0.7 µg/L. 

To assess which were the triggering factors for reproduction, two populations of Callista chione and 

Glycymeris bimaculata were evaluated and compared for intra and inter-specific differences. 

Additionally, a population of Glycymeris pilosa from Pašman was also evaluated. Our results on the 

reproductive cycle of C. chione, G. bimaculata and G. pilosa in the middle Adriatic confirmed the 

dioecious nature of the species and the ability to reproduce nearly all year around. However, observed 

differences in the timing and duration of the reproductive cycle revealed that temperature is not the 

sole factor triggering spawning among all studied populations.  

 

In C. chione, these observations were previously reported in other Atlantic (Moura et al., 2008) and 

Mediterranean populations (Valli et al., 1983; Valli et al., 1994; Metaxatos, 2004; Galimany et al., 2015; 

Tirado et al., 2002). An equal sex ratio was described from histological analyses since macroscopic 

determination based on the coloration and consistency of gonads (Moura et al., 2008), did not allow for 

identifying sex. Previous studies of this venerid bivalve did not report hermaphrodites (Moura et al., 

2008) or declared them very rare (Valli et al., 1983). However, in the present research hermaphroditism 

was occasionally observed, as recently documented in Galimany et al., (2015).  

Based on our population comparison results, seawater temperatures in Pag and Cetina sites oscillated 

between 7.4 and 28.6°C. Similar maximum mean monthly values were observed between sites (25–

26°C) while minimum values were lower at Pag, differing by ~4°C, indicating large spatio-temporal 

variations. Differences in temperature primarily influences the timing and duration of spawning (Valli et 

al., 1994; Galimany et al., 2015) which apparently, appeared to be linked with the inter-site variations in 
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the reproductive cycle observed in this study. Gametogenesis was initiated when temperatures were 

the highest, during two consecutive periods in both populations, and reached maximum gonadal mass 

indices in spring. The spawning period started earlier at Cetina (in January 2015), a period with milder 

temperatures (at ~14°C) which would have favored an earlier maturation of gonads, with a main 

spawning peak in spring prolonged up to June/July. For this species, it is presumed that an extended 

spawning period is advantageous over one single event per year (Moura et al., 2008; Tirado et al., 2002) 

and it compensates its high larvae mortality (Valli et al., 1994). At Pag, the spawning period started later 

on, in April 2015 (at ~12°C), and the main peak took place during summer, with a short time period of 

gamete release (mainly during July) indicative of a major gonad storage during gametogenesis. Both 

spring and summer have been documented as the main spawning period in other populations in the 

Mediterranean (Valli et al., 1983; Valli et al., 1994; Metaxatos, 2004; Galimany et al., 2015; Tirado et al., 

2002) and overall in bivalves (Zwarts, 1991). 

 

A synchrony between female and male cycles was observed, typical of organisms with external 

fertilization to ensure their reproductive success by increasing probabilities of fertilization (Levitan, 

1993). The highest stages of maturation were represented by high mean gonad index (MGI) values and 

were inversely correlated to temperature, showing increasing values during gametogenesis and a clear 

drop with increasing temperatures, as previously described for C. chione by Galimany et al., (2015) and 

also observed for other bivalves (Cruz et al., 2000; Gosling, 2003). Commonly, spawning takes place 

before highest temperatures are reached, a strategy to ensure the viability of eggs (lower during the 

warmest period) and to reduce metabolic demands (Honkoop & van der Meer, 1998). The small 

spawning peak identified for females from Pag in October 2014 could be explained by the unusual 

conditions in the area during that year. After a cold and rainy summer, relatively higher temperatures 

were recorded in October 2014, suggesting the high sensitivity of the species to changes in temperature 

and adaptation capacity. Studies on populations with milder seawater temperatures have reported 

several intra-annual peaks (Tirado et al., 2002; Metaxatos, 2004; Moura et al., 2008) supporting this 

assumption. 

 

Up to date, this is the first study evaluating the reproductive cycle in G. bimaculata and G. pilosa. In the 

G. bimaculata population in Pag, males were more abundant than females (1.0:1.3) whereas in Cetina 

and in the G. pilosa populations, the sex ratio equaled one. Unlike in C. chione, gametogenesis started 

later in time, around October in G. bimaculata and November in G. pilosa, and were therefore 

decoupled from the temperature maxima. On the other hand, the spawning period and timing of the G. 

bimaculata populations in comparison with those of C. chione showed some similarities. Even though 
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the spawning period was shorter in G. bimaculata than in C. chione, the main spawning peak also took 

place earlier in Cetina (September 2014 and August 2015) than in Pag (September/October 2014 and 

September/October 2015) during two consecutive periods. However, temperatures didn’t seem to have 

an influence since they averaged ~26°C in Cetina and ~20─22°C in Pag. In the G. pilosa 12-month-study, 

the timing of spawning took place towards the fall, between October/November 2014 at ~21°C and a 

short maturation period was observed in the oncoming cycle. Glycymeris sp. were characterized by a 

long period in late development stage in females, and in early development stage in males. Likewise, 

both species reached maximum gonadal mass indices during summer and the relationship between MGI 

and temperature was less clear. Based on these results it is hypothesized that in Glycymeris sp. from the 

Adriatic Sea, although the periodicity in temperature may initiate gametogenesis, the spawning period 

and timing was delayed (when compared to that observed in C. chione) likely linked to the need for 

more time to build sufficient energy storage under the presence of food supply. As studied in other 

bivalves, the coupling between temperature and food supply to trigger spawning is required 

(MacDonald et al., 1986; Santos et al., 2011). 

 

The reproductive cycle has been studied in other members of the Glycymeris genus. In G. glycymeris, 

populations from southern Brittany (France) and the Isle of Man (UK) presented different patterns to 

the ones observed here. In France, ripe individuals represented at least 70% of the population 

throughout the year (Lucas, 1965), and Morris (1978) mentioned that UK specimens were able to spawn 

all year around. Based on this knowledge, Steingrimsson (1989) studied G. glycymeris populations from 

around the Isle of Man using stereological techniques, and confirmed that individuals were in mature 

stage all year, thus indicating that most energy in the organism is allocated into reproduction. Under 

stress circumstances, individuals might overcome spawning at larger scales to reach a maximum 

reproductive output (Steingrimsson, 1989). Thus, the observed differences are likely associated with 

different environmental settings, showing once again large differences between North Atlantic and 

Mediterranean species. 

 

On the other hand, the reproductive cycle in the Indian clam, Glycymeris gigantea (Reeve, 1843) from 

the Gulf of California (Mexico) resembled these results more closely. The gonadal development for this 

species was studied bimonthly using common histological techniques and gametogenesis was most 

active from February to May, with a main spawning peak in October (Villalejo-Fuerte et al., 1995). 

However, this study showed a relationship between gamete release and a decrease in temperature of 

nearly 10°C (Villalejo-Fuerte et al., 1995). In the southeastern Adriatic Sea, the dog cockle G. nummaria 

also showed no differences in sex ratio and a synchronous gonadal ripening took place between 
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May─June, with one main annual spawning event (July─August) (Crnčević et al., 2013). In this 

population, the highest MGI values were reported with increasing temperatures (May─July) while the 

spawning peak coincided with the highest temperatures (Crnčević et al., 2013). Hermaphrodites 

represented a small proportion of all sample sizes (< 0.5%) and their presence was also reported in both 

G. glycymeris and G. gigantea (Lucas, 1965; Villalejo-Fuerte et al., 1995). 

 

It is important to note that gonadal neoplasia was observed in histological preparations of all species. It 

was in G. bimaculata and G. pilosa that this parasitic infectation was very marked, especially during early 

active stages. As tumors grow, they invade and destroy normal follicles, as described in other bivalve 

molluscs (Peters et al., 1994). In addition, infection by protozoa parasites were also shown in the gills 

and mantle tissues surrounded by many haematocytes, which could be associated with the presence of 

Perkinsus sp., Nematopsis or Porospora as previously reported in C. chione specimens from the North 

Adriatic (Canestri-Trotti et al., 2000). 

 

The combination of histological analysis and gonadosomatic index (GSI) was applied for the first time in 

C. chione and G. bimaculata revealing that both methods successfully describe the main changes in the 

gametogenic cycle and can be applied for assessing the reproductive effort of these species. Microscopic 

examination has been traditionally used to interpret the reproductive cycle within several main 

gametogenic stages for different marine bivalve species including scallops, mussels and clams 

(e.g.Taylor, 1983; Gray et al., 1997; Delgado & Pérez-Camacho, 2007; Peharda et al., 2006; Popović et 

al., 2013). Despite its advantage in determining and identifying the main stages of development during 

the gametogenic cycle, as observed from our samples, it is a labor intensive method (Gosling, 2003). On 

the other hand, GSI is used to determine the storage and release of gonad material providing a 

quantitative estimate of gonad proportion in a short time interval (Gosling, 2003), although it would not 

be an appropriate tool to determine the main stages of gametogenesis. Whereas in C. chione GSI 

comprised data from both sexes, in the population of G. bimaculata GSI was initially analyzed for both 

males and females. Since no significant differences were shown between GSI and sex, the data were 

pooled together. As a result, GSI proved to be a reliable method for representing the main changes in 

the reproductive cycle as seen in other bivalves (Royer et al., 2008; Uddin et al., 2012; Cardoso et al., 

2009a; Santos et al., 2011), even when sexual differentiation is not contemplated. In addition, this index 

enables determination of the variation in the reproductive output and fecundity.  
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5.2.2. Body mass index 

Body mass index (BMI) values were measured to recognize physiological responses to variations in 

environmental factors (Sebens, 1987; Honkoop et al., 1997). Increasing BMI during the coldest period 

were described in poikilotherms as a response to a reduced metabolic activity (Clarke, 1987; Brey, 1995) 

whereas losses in BMI were enhanced by low food availability in some bivalves (e.g. Honkoop & 

Beukema, 1997; Cardoso et al., 2007; Cardoso et al., 2009b; Santos et al., 2011). In the C. chione 

population from Pag, temporal variations in BMI showed increases during the winter time and early 

spring, with subsequent losses during the summer and fall, as previously observed in this species using 

the condition index (CI) (Moura et al., 2008). In this population, the coupled growth in BMI and GSI was 

evidenced and had a considerably higher amplitude, indicating a proportional investment into soma and 

gonads and higher losses in body mass after spawning. In C. chione from the Cetina population, the 

highest gonadal mass period was coupled with a slightly low BMI, followed by an increase towards the 

summer when spawning was taking place, suggesting a faster recovery and a higher investment into 

somatic growth rather than reproduction, as previously described for populations of Cerastoderma 

edule from northern Spain (Iglesias et al., 1991). In other bivalves, the decrease in body condition during 

summer months was associated with the release of gametes during spawning events and with 

increasing temperatures which would demand a higher metabolic cost (Cardoso et al., 2007; Rueda & 

Smaal, 2004). 

 

In G. bimaculata BMI and GSI were well correlated, with increasing BMI values along with 

gametogenesis. The only previous information in Glycymeris sp. contemplating body mass weight is CI in 

G. gigantea. In this species, CI seemed to follow gametogenic activity, although particularly in this case, 

it could be potentially influenced by changes in water content or nutritious mass in the soft tissue 

(Villalejo-Fuerte et al., 1995).  

 

Therefore, BMI or CI should be used with caution as indicators of gonadal development in bivalves (e.g. 

Gaspar & Monteiro, 1998; Gribben et al., 2004; Drummond et al., 2006) since factors such as 

temperature, food or salinity might be masked and have an influence on the cycle (Tirado et al., 2002). 

In addition, body size could also play a role in the reliability of CI as an indicator of gametogenesis. Based 

on our results and those from congeneric species, in Glycymeris sp. BMI coupled best to GSI; this is likely 

associated with a larger size and highest body condition, compared with C. chione. Further, a better 

somatic condition after spawning implies that once reproductive demands are satisfied, there is more 

energy left over for growth, as suggested in Jokela & Mutikainen, (1995) for Anodonta piscinalis. 
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Accordingly, leaving aside the temperature influence, a higher investment into both soma and gonads in 

C. chione Pag population could potentially result in lower shell growth. This is supported by the lower 

shell growth rate documented for this population by Ezgeta-Balić et al., (2011) and discussed further on. 

 

5.2.3. Reproductive investment, output and fecundity  

The reproductive investment has been widely reported in bivalves to better interpret the allocation of 

energy into somatic and gonadal mass (Royer et al., 2008; Santos et al., 2011; Velasco, 2013). For 

example, seasonal variations in gonadal mass linked to environmental conditions were described at the 

population (Brey, 1995) and species (Jokela et al., 1995) level. Such conditions may influence the 

constant mobilization from somatic to gonadal tissues (Valli et al., 1994) resulting in different 

reproductive strategies as seen in the C. chione case study presented here. A positive relationship 

between gonadal mass and body mass index was shown in both populations, with a higher reproductive 

investment at Pag (16%) than at Cetina (7%). Further, as a result of spawning, a higher percentage of 

gonad release with respect to the preceding state at full maturity was also observed in the population 

from Pag, contributing to a higher reproductive output. In terms of fecundity, individuals from Cetina 

had higher values (96%), indicating that most of their gonadal mass was invested into reproduction. 

The presence of gonads in resorption stage and spawning taking place during a period of high metabolic 

demand (summer) in the population at Pag, suggests the use of gonad storage as a reserve. Under 

unfavorable conditions, the resorption of gametes is common to survive periods of food scarcity, as 

seen in Mytilus edulis (Bayne et al., 1978) and Mya arenaria (Coe & Turner, 1938), which may fluctuate 

at each gametogenic period depending upon food availability (Sastry, 1966; Honkoop et al., 1998; 

Gosling, 2003). Callista chione individuals from Pag possibly use energy reserves stored from the 

previous gametogenic cycle by gonadal resorption to ensure the generation of a new cycle as described 

for Mya arenaria (Coe et al., 1938). Contrarily, in individuals from Cetina gonads were most likely 

produced from newly available food since there was hardly any gonad mass left after spawning was 

completed, as also seen in Cerastoderma edule populations (Cardoso et al., 2009a). 

 

Only in G. bimaculata from Pag could these parameters be determined; therefore, a comparison 

between two reproductive seasons was attempted. Both higher investment and fecundity per brood 

were shown in 2014 (26% and 94%, respectively) compared with 2015 (19% and 92%). A hypothetical 

explanation for these intra-annual differences could be the higher temperatures measured in 2015 (as 

discussed further on). 
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As analyzed in Brey, (1995), the evolutionary adaptation of benthic invertebrate populations living in 

colder environments influence the mode of reproduction, by maintaining the energy invested into 

reproduction while gonad productivity may be reduced. In this context, a lower fecundity in the coldest 

environment is selected as safeguard for guaranteeing next year’s survival and offspring. The same 

strategy was suggested in populations of Scrobicularia plana (Santos et al., 2011). Therefore, from an 

energetic allocation point of view, it seems that the intraspecific variation in the reproductive condition 

of C. chione as a response to different environmental conditions was proven to be advantageous for the 

species. 

 

5.2.4. Future scenario/ implications 

This work was partly carried out in the context of one of the highest global temperature recorded since 

1880, with an average temperature across global land and ocean surface 0.90°C above 20th century 

average in 2015 (NERC, 2015). Our studied populations experienced an increase of up to 2°C between 

two consecutive years with no apparent differences observed in their reproductive behavior based on 

GSI. Shallow-water marine invertebrates are considerably tolerant to short-term variations in 

temperature (Clarke, 1987; Viladrich et al., 2016). Notwithstanding, habitats characterized by 

temperatures above or below an organism optimum can cause an increase in their physiological stress. 

Mass mortality events attributed to high temperatures have been recently witnessed in benthic 

invertebrates in the Mediterranean (Rivetti et al., 2014; Verdelhos et al., 2015). Changes in temporal 

trends of seawater temperature can have an effect on an individual’s body size (Kaustuv et al., 2001) 

and can cause earlier spawning, a higher reproductive investment (Jablonski, 1996; Morgan et al., 2013), 

a lower reproductive output (Philippart et al., 2003) or alterations in growth rate in bivalves (Zucchetta 

et al., 2012). Further, variations in temperature patterns may lead to changes in population dynamics 

causing shifts in bivalve distribution (Root et al., 2003; Jones et al., 2010; Beukema et al., 2009; Gosling, 

2015; Philippart et al., 2011). Considering the overall greater gonadal investment at Pag and the greater 

weight loss during spawning at Cetina, recovery after unfavorable changes seems uncertain for both 

populations. Additionally, potential forthcoming increases of temperature in Pag may alter the 

reproductive strategy and cause a shift in the timing of spawning. The reduction of energy available for 

reproduction due to higher metabolic costs (Brey, 1995; Philippart et al., 2003) and changes in the 

thermal optimum interval (Verdelhos et al., 2015) could cause an extension of gametogenesis, with the 

consequent lack of sufficient resting period for recovery. Thus, small-scale studies taking into account 

both local extrinsic and intrinsic factors (Burdon et al., 2014) in detecting biological responses such as 
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reproductive performance are essential to address climate oscillation impacts, particularly in species of 

management concern.  

Due to a high commercial and economic value of C. chione (Ezgeta-Balić et al., 2011; Tirado et al., 2002; 

Metaxatos, 2004; Galimany et al., 2015) and the ongoing scarcity of natural beds in other 

Mediterranean regions (Ramón et al., 2005; Baeta et al., 2014) a close monitoring of the stock 

assessment is needed to ensure the species health. Furthermore, studies on growth energetics coupled 

with an increased knowledge on the ecological patterns and life strategies will contribute to the 

understanding of how a changing environment affects population dynamics. 

 

5.3. Growth 

5.3.1. Use of δ18O and δ13C as proxies 

Shell microgrowth increments preserve information about the environmental and physiological 

conditions in which mollusks live (Jones et al., 1983), thus, proving to be a good proxy for ecological 

research. In the present study, the reconstructed temperatures estimated from δ18Oshell values in 

combination to high resolution instrumental seawater temperature allowed a precise determination of 

the seasonal growth patterns in Callista chione shells from two different sites. Shells faithfully recorded 

the ambient temperature between April/May and December, and showed little or no growth during the 

winter months. 

The carbon isotope signature of biogenic carbonates and its ambiguous relationship to shell growth 

make it a less clear proxy for palaeoenvironmental reconstructions (McConnaughey & Gillikin, 2008). 

Shell δ13C is derived from dissolved inorganic carbon (DIC) in seawater and organic carbon sources from 

food (incorporated via the metabolic pathway). Distinguishing between the two sources can be difficult 

(Lartaud et al., 2010; McConnaughey et al., 1997). Likewise, δ13Cshell is also influenced by metabolic 

carbon from respired CO2 which initially was thought to be a rather negligible contribution 

(McConnaughey et al., 1997; Lorrain et al., 2004; Gillikin et al., 2006). According to later studies, 

metabolic carbon was shown to contribute > 10% in some species (Gillikin et al., 2009; Gillikin et al., 

2007). For instance, Mercenaria mercenaria showed high ranges of metabolic carbon observed through 

ontogeny (5–37%) resulting in a decrease in δ13Cshell (Gillikin et al., 2007) while in others, no discernable 

decrease in δ13Cshell through ontogeny was shown (Buick & Ivany, 2004; Gillikin et al., 2005; Butler et al., 

2011). The δ13Cshell ranges in C. chione were quite consistent among replicates and between sites, 

averaging negative values and extreme ranges from -1.51 to 0.03‰. A similar δ13Cshell range was found in 

a young specimen of C. chione measured in the Northern Adriatic (-0.99 to -0.06‰; Keller et al., 2002). 
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In this work, the authors suggested that the shell isotopic composition of both oxygen and carbon did 

not have marked variations through ontogeny. In G. bimaculata, just one specimen showed δ13Cshell 

below 0‰ whereas maximum values reached 1.77‰; therefore, interspecific differences could be 

raised due to metabolic differences even if these did not vary through ontogeny. Accordingly, 

interspecific variation at the same locality could be increased due to metabolic differences even if these 

do not vary through ontogeny.  

 

The onset of reproduction may have also affected the δ13Cshell variation. For example, more negative 

δ13Cshell values have been explained by higher metabolic rates after as a consequence of restoring the 

energy lost during spawning (Gillikin et al., 2006). According to other studies based on laboratory 

experiments with different diets more negative δ13Cshell values were associated with higher metabolic 

activity as a result of increased food availability (Lartaud et al., 2010; Sejr et al., 2004). Based on the 

detailed biological and ecological dataset and their covariation with δ13Cshell, spring/summer presented 

the highest values with a decreasing pattern towards the winter. These findings suggest that the 

decrease in δ13Cshell in C. chione is not a consequence of the aftermath of spawning. Instead, this 

covariation is most probably associated with low food availability given that spring and summer are the 

periods with the highest availability of food in the study area. The role of both gametogenesis and food 

supply in interpreting proxy records needs more attention, especially in relation to δ13C.  

In summary, the incorporation of light carbon from metabolic CO2 into the shells may result from 

environmental and physiological effects, and the relative proportion of these two factors may vary 

amoing species. Hence, its use as a δ13CDIC or salinity proxy still remains unclear. In addition, the 

relationship between oxygen and carbon isotopes still present challenging interpretations potentially 

associated with ontogenetic effects. Based on these results in C. chione specimens and in younger 

specimens of G. bimaculata (those from Pag), both isotopes were inversely co-varying.  

 

5.3.2. Growth patterns: timing and rate of shell growth 

5.3.2.1. Growth patterns in Callista chione  

The current study presents a monthly resolved and temporally aligned growth record for young 

specimens of C. chione in the eastern Adriatic Sea, allowing an estimate of the timing and rate of shell 

growth. The annual cycle of δ18Oshell values showed a unimodal distribution whereas the growth curve 

presented a bimodal pattern with maximum values up to 2.46‰ and 1.79‰ and minimum values down 

to -0.82‰ and -0.91‰ in Pag and Cetina populations, respectively. These amplitudes were higher in 
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specimens from Pag since maximum values differed between the populations by nearly 1‰, whereas 

the minimum values were quite similar between sites, indicating that populations in Pag grew during a 

colder temperature period. Maximum reconstructed temperatures from δ18Oshell values coupled well 

with high resolution instrumental SST and these were ~ 1°C lower at Pag than at Cetina sampling sites 

(26.9 vs 28.1°C). Evaporation rates may increase during summer due to higher temperatures and a 

decrease in precipitation, causing more positive δ18Owater values, and consequently, δ18Oshell values tend 

to be underestimated (Radermacher et al., 2009; Goodwin, Flessa & Schöne, 2001). This could explain 

the slight differences between reconstructed and instrumental temperature maxima. Likewise, the 

temperature minima did not compare well with reconstructed temperatures (7.4 vs 13.6°C and 10.9 vs 

16.6°C for Pag and Cetina, respectively). The overall reconstructed temperatures suggest an extremely 

slowdown of shell growth or growth cessation between winter and late spring (January – April). Periods 

of very limited growth could lead to biased δ18Oshell temperature reconstructions due to time-averaging 

(Schöne, 2008). Generally, δ18Oshell values are analyzed on the carbonate material obtained by drilling or 

milling in the shell, an amount oscillating between 50 – 120 µg. During periods of slow growth, this 

amount is likely to contain material formed during a longer period of time. Therefore, the resulting 

overall δ18O signal derives from a large average between multiple δ18Oshell values, which is likely to 

slightly bias the reconstructed temperatures (Goodwin et al., 2004). The δ18Oshell ranges are within those 

of a young specimen (slightly over 3 years old) measured by Keller et al., (2002) which oscillated 

between -1.5 to 2‰ and whose reconstructed temperatures fell between 13.2 and 30.6°C. In that study, 

maximum reconstructed temperatures were too high for the area, possibly caused by assuming a 

δ18Owater value of 1‰ for the whole year. Coastal areas are very likely influenced by freshwater influxes 

altering the annual variation of δ18Owater which may result in biased temperature reconstructions. 

Growth bands were observed macroscopically on the shell surfaces and in cross-sectioned valves and 

consisted of a series of more densely packed (intra-annual) growth lines. Annually resolved growth lines 

during this period have also been documented in other populations from the Adriatic Sea (Ezgeta-Balić 

et al., 2011; Hall et al., 1974). In contrast, in the SW of Portugal, growth lines were deposited between 

September and January (Moura et al., 2009). A closer examination revealed a series of closely spaced 

and distinct shell growth bands deposited at the end of summer/early fall most probably representing a 

waning of shell growth. These results are in line with those anticipated by Hall et al., (1974) for a North 

Adriatic population and are supported by the lower density of samples (more spaced data points) 

observed around the growth band regions (Fig. 4.4.4). Therefore, annual growth bands in C. chione 

shells from the Adriatic Sea are indicators of a slow growth preceding a sharp decrease in shell growth.  
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5.3.2.2. Growth patterns in Glycymeris bimaculata  

Uninterrupted δ18Oshell records were obtained by milling from G. bimaculata cross-sections. 

Micromilling, rather than the drilling of individual holes, is considered the best sampling technique 

ensuring a complete growth record from the sampled specimens and thus enabling a higher temporal 

resolution (Schöne, 2008). Additionally, micromilling favors the sampling of equal fractions in shell 

increments, minimizing spacing between samples and ideally completed at equidistant intervals. As in 

the C. chione results, a unimodal distribution was shown based on the annual cycle of δ18Oshell values 

which overall, showed higher amplitudes in specimens from Cetina. In addition, contrary to that 

observed in C. chione, maximum δ18Oshell values were obtained from the Cetina populations (maximum 

of 2.44‰ compared with 1.84‰ in Pag), which could be related either to time-averaging, species-

specific thresholds or to an ontogenetic trend. Even though milling is a high sampling resolution 

technique, time-averaging could be responsible for the lower amplitude observed in shell CB2. Time-

averaging effects occur when sample sizes differ, and it generally takes place in those increments where 

growth slows down and the sample interval remains the same, thus, the same sample size represents 

(averages) more time (Goodwin et al., 2004) reducing the amplitude of δ18Oshell values. 

The observed differences between sites do not seem to be species related since maximum and 

minimum δ18Oshell values between both species fell within similar ranges regardless of site. Additionally, 

on a previous study of G. bimaculata from Pag, δ18Oshell values oscillated from -0.5 to 2.3‰ (Bušelić et 

al., 2015), indicating that shells can also record similar amplitudes to those from Cetina. It is frequently 

assumed that bivalves have a similar growth season through ontogeny; however ontogeny is likely 

associated with these variations in our study sites since specimens sampled at Pag were much older (16 

and 25 years) than those in Cetina (10–13 years). Furthermore, based on the oxygen isotope values from 

G. bimaculata juvenile shells from Pag, the ranges showed higher values (-0.61 to 2.62‰) than in adults, 

and these were similar to those from Cetina (-0.83 to 2.44‰). Moreover, the amplitude of δ18Oshell 

values in C. chione has been shown to decrease through ontogeny (Keller et al., 2002). Previous studies 

of shell increments based on stable oxygen isotopes in other species also revealed wider isotopic 

amplitudes in juveniles and even a longer growth season, as seen in Spisula solidissima (Say, 1822) 

(Ivany et al., 2003), Phacosoma japonicum (Schöne et al., 2003) and Mercenaria stimpsoni (Gould, 1861) 

(Kubota et al., 2017). Maximum reconstructed temperatures from δ18Oshell values also coupled well with 

high resolution instrumental SST, with very similar ranges between sites. These results indicated that 

shell growth is extremely slow or rather negligible between January and April. 
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The identification of shell growth bands in adult G. bimaculata specimens is not straightforward even 

microscopically. Previous studies of G. bimaculata validated the annual growth line formation in spring 

coinciding with the increase of seawater temperatures (Bušelić et al., 2015). By contrast, the timing of 

growth line formation in two congeneric species, G. glycymeris and G. nummaria, coincided with the 

seawater temperature minima. Whereas in G. glycymeris from the western English Channel the growth 

line was deposited between December and March (Berthou et al., 1986), marginal increment analysis of 

G. nummaria from the Adriatic Sea showed that the growth line was laid down by March (Peharda et al., 

2012). On the other hand, small G. bimaculata (3 years old) specimens from the present study had 

clearer visible lines with the naked eye and, which based on the measured stable oxygen isotopes, these 

corresponded to the end of summer/early fall. These results should be treated with caution until more 

replicates corroborate these observations. In a recent study of a fossil Glycymeris sp., G. planicostalis, 

Walliser et al., (2015) postulated higher shell growth rates during spring and summer rather than fall 

and winter, suggesting the need to sample slow-growing portions of the shell at a higher resolution. 

Looking at these results, it can be inferred that Glycymeris species from this genus are likely to present a 

season of shell growth cessation.  

Optimum temperature ranges for shell growth are species-specific (Chauvaud et al., 2005; Ivany et al., 

2003). Here, both studied species presented the highest growth rates during the summer months, 

especially during July and August, although some peaks differed according to site. Site-specific 

differences in growth rates are not surprising, as previously observed in other mollusks (Radermacher et 

al., 2009). For instance, in the bivalve P. japonicum, the length and rate of growth were mainly 

controlled by temperature, showing differences between two nearby sampling sites (Schöne et al., 

2003). 

 

5.3.3. Environmental and physiological controls of shell microincrement growth  

Environmental stimuli such as temperature, photoperiod or food supply are known to influence growth 

patterns in marine benthic invertebrates. Whether temperature or food availability is the main driver of 

shell growth rate is a fundamental question raised by many authors (e.g. Goodwin et al., 2001; Ivany et 

al., 2003). There is a close agreement between δ18Oshell derived temperature estimates and observed 

temperatures, suggesting C. chione and G. bimaculata shells act as good environmental recorders. As 

observed from these results, the interpretation of geochemical signals is sensitive to the season of 

growth and it can vary within species even at short-scale distances (ca. 200 Km). These observations 

together with high correlations between shell growth and temperature at both sites provide further 

evidence of the influence of temperature in shell growth control. In addition, decreasing temperatures 



115 

 

are likely influencing the deposition of shell growth line in C. chione. In other venerid bivalves from the 

NW Pacific, Mercenaria stimpsoni (Kubota et al., 2017) and Phacosoma japonicum (Tanabe 1988, Schöne 

2003) and from NE Pacific coast Chione cortezi Carpenter, 1864 (Goodwin et al., 2001; Goodwin et al., 

2003) δ18Oshell seasonality was suggested to be driven by the annual variation of seawater temperature, 

where shell growth ceased during the cold season. While maximum summer temperatures were 

recorded consistently at both Pag and Cetina sites, the lowest recorded temperatures varied between 

them, suggesting that temperature is not the only driver of the winter slowdown in growth. 

 

Food. In ectothermic organisms, the growth rate tends to increase with temperature as a result of a 

higher metabolic rate as long as the food supply is abundant (Broom et al., 1978). Even when 

temperatures are high, a minimum amount of available food is required for organism maintenance and 

therefore, growth (Broom et al., 1978). Similarly, when temperature thresholds for growth are not 

reached, the amount of available food is insufficient for growth. Certainly, the quality of food 

determines the growth rate in organisms that mainly rely on fresh phytoplankton and other components 

of suspended particulate matter (Pernet et al., 2012). This represents the major source of food for filter-

feeding bivalves, where phytoplankton provides the best source of energy (Witbaard et al., 2001). 

Often, the interpretation of food availability and quality based on phytoplankton concentration is hard 

to assess when it is not measured in situ, since available satellite data has a coarse resolution over 

coastal areas. 

Based on the measurement of several environmental parameters previously analyzed in the present 

thesis, the periods with the best quality of food in these two settings are spring and summer. Both 

bivalves are filter-feeders and feed upon a mixed diet composed of phytoplankton, zooplankton, 

microphytobenthos and detritus including bacteria-derived detritus. The significant positive correlation 

between δ13CSPM in Pag and shell growth rates indicates that food supply is an important driver. 

Similarly, the growth rate decrease during fall could be influenced by a shortage in food supply. This 

correlation did not prove significant in Cetina; however, the lack of environmental record in shells (from 

reconstructed δ18Oshell values) over this time period suggest a similar hypothesis. 

Therefore, whereas temperature stands as an important determinant of shell growth, food availability 

could set the limits of the shell growth season, considering that during winter food is scarce and its 

quality is the poorest in the area. Other studies have attributed the onset of the growth season to 

phytoplankton blooms. Higher growth rates were observed in M. galloprovincialis during the period of 

highest primary productivity (March ‒ May) when temperatures were relatively low in contrast to that 

observed at the highest temperatures (Peharda et al., 2007). In Arctic ecosystems, where mean annual 
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temperature ranges are quite narrow, shells of Serripes groenlandicus (Mohr, 1786) and Clinocardium 

ciliatum (Fabricius, 1780) deposit winter growth lines as a response to insufficient food supply (Ambrose 

et al., 2012; Vihtakari et al., 2016). Also, in M. stimpsoni from the NW Pacific food availability was 

suggested to be an indicator of the winter growth break (Kubota et al., 2017). In other mollusks such as 

the gastropod Strombus gigas Linnaeus, 1758, shell growth was largely controlled by food supply rather 

than by temperature; according to Radermacher et al., (2009), it is possible that rainfall acts to increase 

the amount of nutrients and thus primary productivity and shell growth, as revealed in their study area. 

 

Reproduction. 

Interruptions of shell growth can also be a response of endogenous rhythms, which in turn, fall in 

synchrony with the above mentioned environmental stimuli (Brockington & Clarke, 2001). For instance, 

an endogenous time-keeping mechanism is gametogenesis, which several studies have shown to play a 

role in decreasing shell growth rates and shell growth line formation. In most multicellular animals, 

there is an initial period of growth and development before reaching sexual maturity when the 

production of gametes starts. Endogenous shell growth rhythms may be a result of a varying resource 

allocation towards growth as a trade-off to other requirements for the physiological processes (Abele & 

Philipp, 2013). In the present study, gonadosomatic index was negatively correlated to shell growth 

rates in the Callista chione population from Cetina and a negative pattern was also observed in the Pag 

population. These results indicated that spawning events occurred prior to the highest shell growth 

rates whereas the onset of gametogenesis (October – December) coincided with a shell growth decline. 

Gametogenesis is a high-energy consumption period for egg and sperm production for which bivalves 

usually prepare by building up nutrient reserves before it takes place. The slow growth could be 

associated with a preferential allocation of energy to reproduction rather than growth. The population 

in Cetina typically experiences a fall/winter gonadal growth under periods of food scarcity, as seen in 

other species (e.g. Seed, 1976). Alternatively, the Pag population would develop gametogenesis in a 

shorter period, late winter/spring, when favorable conditions were at their maximum, possibly 

explaining the relatively higher growth rates observed in December and May. In another population of 

C. chione from the north Adriatic, spawning was presumed to occur between spring and summer, with 

the growth line deposition coinciding with the start of gametogenesis (estimated at the end of 

summer/early fall) (Hall et al., 1974). In another venerid bivalve, P. japonicum, slow growth was 

observed between June – July during the ripe gonadal phase, and growth was resumed after spawning 

thus, named as spawning break (Sato, 1995). Gonadal maturation was also associated with decreasing 

shell growth rates in one of the Arctic populations studied by Vihtakari et al., (2016).  
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Likewise, as firstly described in mytilid bivalves, a decline in growth efficiency was observed with 

increasing size, due to the increasing metabolic demands (Jørgensen, 1976). Thus, the relative allocation 

of energy towards growth and reproduction has an ontogenetic shift (von Bertalanffy growth equation 

assumption). In Cerastoderma edule (Linnaeus, 1758), sexually immature individuals barely slowed shell 

growth during the summer, contrasting to adult specimens which showed a distinctive growth line 

during this season (Milano et al., 2017). These summer growth lines were also observed in a separate 

study (Ramón, 2003) although it still remains unclear if these are associated with reproduction. In P. 

undulata, high growth rates in spring occurred presumably prior to the spawning timing, which took 

place over the summer together with lower shell growth rates (Yan et al., 2014). On the other hand, in 

M. stimpsoni, the hypothesis of spawning triggering the summer growth band was ruled out, since this 

was produced in both adult and immature juveniles and although the reason remained unknown, a 

possible explanation could be the higher temperatures reported in that study area (Kubota et al., 2017). 

Yet, bivalve may mimic reproduction during pre-maturity so that immature juveniles may show similar 

responses to adults (Thompson et al., 1980). In A. islandica, the growth break observed in adults during 

gametogenesis was suggested to be mimicked by juveniles (Schöne et al., 2005) although a later study 

showed that different populations form the annual growth line at the same time although reproductive 

events occur at different timings (Schöne, 2013). An Antarctic species, Yoldia eightsi (Courthouy, 1839) 

might have its shell growth constrained by gametogenesis (Román-González et al., 2017). In M. edulis 

from Tokio Bay, slower shell growth rates during winter were possibly controlled by a combination of 

environmental and physiological factors (Okaniwa et al., 2010). Our results showed a correspondence 

between the annual biocheck formation and the post-spawning and regeneration stage in C. chione. This 

periodicity was coincident with decreasing of both temperatures and food supply, and therefore is 

difficult to determine which of these factors was the main driver. 

Shell growth rates in G. bimaculata specimens were highest during late spring and summer, which 

coincided with the spawning timing at both sites (July – September). Considering a growth line 

formation at the end of summer (as discussed previously from young shells), a relationship with the end 

of gametogenesis and the onset of a new cycle could be inferred. In Scapharca broughtonii (Schrenck, 

1867), an Arcidae family species, summer growth breaks were observed during the highest temperature 

peak based on microstructure analysis, and these were in turn associated with spawning events (Nishida 

et al., 2012). Therefore, this hypothesis cannot be disregarded. As supported by the above mentioned 

literature, resource allocation differences during gametogenesis are species-specific. Whether this 

physiological process or environmental drivers are the main triggers for shell growth is a continuing 

topic for discussion.  
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To conclude, the species-specific physiological optimum is a combination of warm temperatures and 

quality and quantity of food supply in areas where predation is not a major threat; therefore, species 

from Cetina have a better condition in terms of higher shell growth rates associated with milder 

temperatures and higher quality of food. Shell growth and gonad development were active at several 

intervals, but coincided the most with periods of the highest food quality in the surrounding 

environment. Our results showed that both C. chione and G. bimaculata, despite showing varying 

ecological characteristics between sites, do share a period of growth slowdown, suggesting the 

coincidental food supply in the region as a limiting factor. The reduced shell growth during late fall and 

winter, when seawater temperatures and food availability were the lowest, coupled with the onset of 

gametogenesis suggested a reduced shell growth as a result of unfavorable environmental conditions 

and a higher requirement of reproductive effort. Unlike in mark-recapture or lab-cultured experiments, 

where animals may suffer the newly provided conditions (e.g. Iglesias & Navarro, 1991), growth studies 

presented in this thesis allow reporting changes in an environmental context which reflects natural 

conditions. 

 

5.3.4. Potential for paleoclimate reconstructions 

Sclerochemical analysis performed on C. chione and G. bimaculata shells provided feasible data for 

reconstructing maximum temperatures. Shells do not monitor the environment uninterruptedly 

(Goodwin et al., 2003; Ivany et al., 2003) and are faithful recorders of environmental conditions only 

during growth, as shown in this study. Therefore, the reconstruction of the seawater temperature 

minima from δ18Oshell values in this region is not feasible due to the negligible shell growth during the 

coldest months. These results further support studies in ontogenetically younger portions of the shell, 

since these regions are more reliable indicators of past temperature reconstructions not only due to 

faster growth rates (enabling higher resolution) but also because they cover a wider spectrum of past 

temperatures. A clear example of this is shown in Kubota et al., (2016), where studies in M. stimpsoni 

postulated shell growth between spring and fall in juveniles, whereas adults deposited shell material 

almost exclusively during the summer. These observations highlight the importance of considering both 

juvenile and mature shell portions when studying shell growth patterns. Certainly, because of its 

longevity, Glycymeris sp. has a great potential for sclerochronology. Comparing growth dynamics in 

congeneric species at close-by locations may indicate the range of potential differences associated with 

their longevity. To reliably compare shell growth rates between our studied populations, sclerochemical 

analysis in shell replicates need to be extended (further milled) to cover the same annual periods. 
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The Glycymerididae is a cosmopolitan family from the Cenozoic, inhabiting temperate to warm-water 

environments (Thomas, 1975; Nicol, 1964). Glycymeridid bivalve records have been found in shallow-

marine deposits from the northeast Pacific upper Cretaceous and Paleocene (Squires, 2010). 

Sclerochronological studies have been conducted on the Oligocene bivalve G. planicostalis (Walliser et 

al., 2015). Pliocene fossils have also been recorded from the North Sea Basin and G. radiolyrata was 

suspected to evolve from G. bimaculata (Moerdijk et al., 2000). Additionally, fossil Glycymeris sp. and 

Callista sp. shells have been found in Venus-Ancilla assemblages from the Miocene in northern Italy 

(Bernasconi & Robba, 1993), while Pleistocene marine deposits from the Mediterranean (Torres et al., 

2013; Crippa, 2013; Crippa et al., 2016) and northern Patagonia (Bayer & Gordillo, 2013) contain fossil 

shells of several Glycymeris sp. Radiocarbon studies in shells of G. nummaria (before G. insubrica) have 

been aged 5500 years BP during the Holocene (Sivan et al., 2006). Gutierrez-Mas, (2011) suggested that 

Glycymeris sp. shell accumulations may shed light on recent sea-level changes as studied in Cadiz Bay. 

Altogether and the use of Glycymeris sp. and Callista chione shells by Neanderthals along the northern 

Mediterranean (Cortés-Sánchez et al., 2011; Romagnoli et al., 2016) make them interesting targets for 

palaeoecological studies.  

 

5.3.5. Future research 

A wide range of techniques and applications to sclerochronology are currently under development. 

Studies relating crystallographic properties with geochemical analysis in the shell in relation to the 

surrounding environment have recently postulated that higher metabolic rates, as a result of warmer 

temperatures and high-availability of food, likely synthesize larger amounts of organic material in the 

shell matrix (Nishida et al., 2012; Milano et al., 2017). Different microstructures contain different 

mixtures of organics, thus, their study may identify periods of major growth line formation or line 

disturbances (Stemmer & Nehrke, 2014; Cuif et al., 2013). On the other hand, trace elements have also 

been used as environmental proxies, providing insights into physiological, environmental and even 

anthropogenic effects on shell growth variation (Carroll et al., 2009; Elliot et al., 2009; Gillikin, 2005; H. 

Yan et al., 2014) and recently improved techniques have revealed high resolution periodicities of 

elemental ratios such as Mg/Ca, Sr/Ca, B/Ca or Ba/Ca from fossil and modern clams (Zhao et al., 2017; 

Schöne, 2013; Hori et al., 2015) although distinguishing between environmental and physiological 

factors is challenging. These new approaches should be carried out to gain a better understanding of 

proxy incorporation in natural settings and thus, revealing more details of bivalve life history traits given 

the extensive environmental and biological data collection from this thesis.  
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6. CONCLUSION 

 

 A mixture of marine and terrestrial sources constitutes the particulate matter in the coastal 

central Adriatic Sea and also presents a temporal variation. A terrestrial influence is evident in 

winter and spring, while a progressive mixing with marine waters is observed in summer and 

fall, after the main phytoplankton blooms. 

  Low %C and %N characterize the sediment, corroborating its poor nutritional quality in this 

oligotrophic sea. 

 Stable isotopes and fatty acid analysis revealed spring and summer as the periods with best 

nutritional quality of the particulate matter. 

 The δ13C in the digestive gland was species-specific, with more enriched values in Glycymeris 

bimaculata than Callista chione, whereas δ15N was site-specific, with more enriched values in 

Cetina. 

 No feeding overlap between G. bimaculata and C. chione was observed suggesting resource 

partitioning. Populations in Pag showed a higher contribution of sediment to their diet, and the 

presence of benthic diazotroph biomass was likely responsible for the low δ15N in their diet. 

 Site-specificity was dominant when comparing the isotopic composition of two populations of G. 

pilosa, with more isotopically enriched values in Pašman.  

 The present work accentuated the importance of assessing spatial and temporal changes of a 

large set of biochemical parameters in feeding ecology studies. 

 Histology and Gonadosomatic index successfully described the main changes in the gametogenic 

cycle of two different species, C. chione and G. bimaculata. 

 Inter-site variations in the spawning timing and duration of C. chione were most likely due to 

temperature, taking place earlier and for a more prolongued period in Cetina, the warmest site. 

 Different reproductive strategies between C. chione populations were shown by a resorption of 

gonads in Pag population, as a result of the species adaptation capacity to unfavorable 

conditions (e.g. temperature). 
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 A later spawning period and timing in Glycymeris sp. relative to C. chione was most likely related 

to insufficient time to develop enough energy storage during periods of sufficient food supply. 

 Body mass index is not always an indicator of body condition in bivalves. 

 Seasonal variation in δ18Oshell values measured from C. chione and G. bimaculata specimens from 

the Adriatic Coast revealed that shell accretion took place mainly between May and December. 

 Annual growth bands were clearly deposited at the end of summer and early fall in C. chione as 

a result of slow growth. In G. bimaculata growth lines in young specimens were laid down at the 

temperature maxima but in adults it remains unclear. 

 Temperature is an important determinant of shell growth whereas food availability set the limits 

of the shell growth season. The onset of gametogenesis coincided with periods of slow growth 

suggesting a preferential allocation of energy to reproduction rather than growth. 

 These results document extensively several aspects of bivalve ecology in the Adriatic Sea and a 

comprehensive relationship with shell growth, establishing baseline information for further 

studies on the studied species and other bivalves. 

 Sclerochronology coupled to physiological and ecological studies contribute to a better 

understanding of species life-history traits. 



123 

 

7. LITERATURE 

Abele, D. & E. Philipp. 2013. Environmental Control and Control of the Environment: The Basis of 

Longevity in Bivalves. Gerontology, 59(3): 261–266. 

Ackman, R., C. Tocher & J. MacLachlan. 1968. Marine phytoplankter fatty acids. J. Fish. Res. board 

Canada, 25: 1603–1620. 

Ahlgren, G., T. Vrede & W. Goedkoop. 2009. Fatty acid ratios in freshwater fish, zooplankton and 

zoobenthos—are there specific optima? In M. Arts, M. Brett, & M. Kainz, eds. Lipids in aquatic 

ecosystems. London, New York: Springer Science, pp. 147–178. 

Ahn, I.-Y., K. Woong Cho, K.-S. Choi, Y. Seo & J. Shin. 2000. Lipid content and composition of the 

Antarctic lamellibranch, Laternula elliptica (King & Broderip) (Anomalodesmata: Laternulidae), in 

King George Island during an austral summer. Polar Biol., 23(1): 24–33. 

Albentosa, M., U. Labarta, M. Fernández-Reiriz & A. Pérez-Camacho. 1996. Fatty acid composition of 

Ruditapes decussatus spat fed on different microalgae diets. Comp. Biochem. Physiol. Part A, 113: 

113–119. 

Alkanani, T., C.C. Parrish, R.J. Thompson & C.H. McKenzie. 2007. Role of fatty acids in cultured mussels, 

Mytilus edulis, grown in Notre Dame Bay, Newfoundland. J. Exp. Mar. Bio. Ecol., 348(1-2): 33–45. 

Alomar, C., M. Vázquez-Luis, K. Magraner, L. Lozano & S. Deudero. 2015. Evaluating stable isotopic 

signals in bivalve Pinna nobilis under different human pressures. J. Exp. Mar. Bio. Ecol., 467: 77–86. 

Ambrose, W.G., P.E. Renaud, W.L. Locke, F.R. Cottier, J. Berge, M.L. Carroll, B. Levin & S. Ryan. 2012. 

Growth line deposition and variability in growth of two circumpolar bivalves (Serripes 

groenlandicus, and Clinocardium ciliatum). Polar Biol., 35(3): 345–354. 

Ansell, A. 1968. The rate of growth of the hard clam Mercenaria mercenaria (L) throughout the 

geographical range. J. du Cons. Perm. Int. pour l’Exploration la Mer, 31: 364–409. 

Antolić, B., D. Bogner, N. Bojanić, I. Cvitković, M. Despalatović & B. Grbec. 2010. Kontrola kakvoče 

obalnog mora 2009? Projekt Pag-Konavle, Split. 

Antonio, E. & N. Richoux. 2014. Trophodynamics of three decapod crustaceans in a temperate estuary 

using stable isotope and fatty acid analyses. Mar. Ecol. Prog. Ser., 504: 193–205. 

Antonio, E.S., A. Kasai, M. Ueno, Y. Ishihi, H. Yokoyama & Y. Yamashita. 2012. Spatial-temporal feeding 



124 

 

dynamics of benthic communities in an estuary-marine gradient. Estuar. Coast. Shelf Sci., 112: 86–

97. 

Antonio, E.S., A. Kasai, M. Ueno, Y. Kurikawa, K. Tsuchiya, H. Toyohara, Y. Ishihi, H. Yokoyama & Y. 

Yamashita. 2010. Consumption of terrestrial organic matter by estuarine molluscs determined by 

analysis of their stable isotopes and cellulase activity. Estuar. Coast. Shelf Sci., 86(3): 401–407. 

Antonio, E.S. & N.B. Richoux. 2016a. Influence of diet on the metabolic turnover of stable isotope ratios 

and fatty acids in the omnivorous shrimp Palaemon peringueyi. Mar. Biol., 163(7): 154. 

Antonio, E.S. & N.B. Richoux. 2016b. Tide-Induced Variations in the Fatty Acid Composition of Estuarine 

Particulate Organic Matter. Estuaries and Coasts, 39(4): 1072–1083. 

Bacon, G.S., B.A. Macdonald & J.E. Ward. 1998. Physiological responses of infaunal (Mya arenaria) and 

epifaunal (Placopecten magellanicus) bivalves to variations in the concentration and quality of 

suspended particles I. Feeding activity and selection. J. Exp. Mar. Bio. Ecol., 219: 105–125. 

Baeta, M., M. Ramón & E. Galimany. 2014. Decline of a Callista chione (Bivalvia: Veneridae) bed in the 

Maresme coast (northwestern Mediterranean Sea). Ocean Coast. Manag., 93: 15–25. 

Baker, S.M. & D.J. Hornbach. 2000. Physiological Status and Biochemical Composition of a Natural 

Population of Unionid Mussels (Amblema plicata) Infested by Zebra Mussels (Dreissena 

polymorpha). Am. Midl. Nat., 143(2): 443–452. 

Barker Jørgensen, C. 1976. Growth efficiencies and factors controlling size in some mytilid bivalves. 

Especially Mytilus edulis L.: review and interpretation. Ophelia, 15(2): 175–192. 

Bayer, M. & S. Gordillo. 2013. A new Pleistocene species of Glycymeris from Northern Patagonia. 

Ameghiniana, 50(2): 265–268. 

Bayne, B.L. 2009. Carbon and nitrogen relationships in the feeding and growth of the Pacific oyster, 

Crassostrea gigas (Thunberg). J. Exp. Mar. Bio. Ecol., 374(1): 19–30. 

Bayne, B.L., D.L. Holland, M.N. Moore, D.M. Lowe & J. Widdows. 1978. Further studies on the effects of 

stress in the adult on the eggs of Mytilus edulis. J. Mar. Biol. Ass. U. K., 58(04): 825–841. 

Bentaleb, I., M. Fontugne, G. Descolas-Gros, C. Girardin, A. Mariotti, C. Pierre, C. Brunet & A. Poison. 

1998. Carbon isotopic fractionation by plankton in the Southern Indian Ocean: relationship 

between δ13C of particulate organic carbon and dissolved carbon dioxide. J. Mar. Syst., 17: 39–58. 



125 

 

Bergamino, L., T. Dalu & N.B. Richoux. 2014. Evidence of spatial and temporal changes in sources of 

organic matter in estuarine sediments: Stable isotope and fatty acid analyses. Hydrobiologia, 

732(1): 133–145. 

Bernasconi, M. & E. Robba. 1993. Molluscan palaeoecology and sedimentological features: an integrated 

approach from the Miocene Meduna section, northern Italy. Palaeogeogr. Palaeoclimatol. 

Palaeoecol., 10: 267–290. 

Berthou, P., M. Blanchard, P. Noel & C. Vergnaud-grazzini. 1986. The analysis of stable isotopes of the 

shell applied to the determination of the age of four bivalves of the “Normano-Breton” Gulf, 

Western Channel. ICES, K16: 1–13. 

Berto, D., F. Rampazzo, S. Noventa, F. Cacciatore, M. Gabellini, F.B. Aubry, A. Girolimetto & R.B. Brusà. 

2013. Stable carbon and nitrogen isotope ratios as tools to evaluate the nature of particulate 

organic matter in the Venice lagoon. Estuar. Coast. Shelf Sci., 135: 66–76. 

Beukema, J.J., R. Dekker & J.M. Jansen. 2009. Some like it cold: populations of the tellinid bivalve 

Macoma balthica (L.) suffer in various ways from a warming climate. Mar. Ecol. Prog. Ser., 384: 

135–145. 

Boëchat, I.G., A. Krüger, R.C. Chaves, D. Graeber & B. Gücker. 2014. Science of the Total Environment 

Land-use impacts on fatty acid profiles of suspended particulate organic matter along a larger 

tropical river. Sci. Total Environ., 482-483: 62–70. 

Böhm, F., M.M. Joachimski, W.C. Dullo, A. Eisenhauer, H. Lehnert, J. Reitner & G. Worheide. 2000. 

Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochim. Cosmochim. Acta, 

64: 1695–1703. 

Bonacci, O. 2015. Karst hydrogeology / hydrology of dinaric chain and isles. Environ. Earth Sci., 74: 37–

55. 

Bonacci, O. & T. Roje-Bonacci. 2003. The influence of hydroelectrical development on the flow regime of 

the karstic river Cetina. Hydrol. Process., 17(1): 1–15. 

Boon, A. & G. Duineveld. 1996. Phytopigments and fatty acids as molecular markers for the quality of 

near-bottom particulate organic matter in the North Sea. J. Sea Res., 35(4): 279–291. 

Braeckman, U., P. Provoost, K. Sabbe, K. Soetaert, J.J. Middelburg, M. Vincx & J. Vanaverbeke. 2015. 

Temporal dynamics in a shallow coastal benthic food web: insights from fatty acid biomarkers and 



126 

 

their stable isotopes. Mar. Environ. Res., 108: 55–68. 

Brey, T. 1995. Temperature and reproductive metabolism in macrobenthic populations. Mar. Ecol. Prog. 

Ser., 125: 87–93. 

Brocas, W.M., D.J. Reynolds, P.G. Butler, C.A. Richardson, J.D. Scourse, I.D. Ridgway & K. Ramsay. 2013. 

The dog cockle, Glycymeris glycymeris (L.), a new annually-resolved sclerochronological archive for 

the Irish Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol., 373: 133–140. 

Brockington, S. & A. Clarke. 2001. The relative influence of temperature and food on the metabolism of 

a marine invertebrate. J. Exp. Mar. Bio. Ecol., 258(1): 87–99. 

Broom, M.J. & J. Mason. 1978. Growth and spawning in the pectinid Chlamys opercularis in relation to 

temperature and phytoplankton concentration. Mar. Biol., 47(3): 277–285. 

Bucci, J.P., W.J. Showers, B. Genna & J.F. Levine. 2009. Stable oxygen and carbon isotope profiles in an 

invasive bivalve (Corbicula fluminea) in North Carolina watersheds. Geochim. Cosmochim. Acta, 

73(11): 3234–3247. 

Buddemeier, R., J. Maragos & D. Knutson. 1974. Radiographic studies of reef coral exoskeletons: rates 

and patterns of coral growth. J. Exp. Mar. Bio. Ecol., 14: 179–200. 

Budge, S., S. Iverson, W. Bowen & R. Ackman. 2002. Among- and within-species variability in fatty acid 

signatures of marine fish and invertebrates on the Scotian Shelf, Georges Bank, and southern Gulf 

of St. Lawrence. Can. J. Fish. Aquat. Sci., 59: 886–898. 

Budge, S. & C. Parrish. 1998. Lipid biogeochemistry of plankton, settling matter and sediments in Trinity 

Bay, Newfoundland. II. Fatty acids. Org. Geochem., 29: 1547–1559. 

Budge, S.M., M.J. Wooller, A.M. Springer, S.J. Iverson, C.P. McRoy & G.J. Divoky. 2008. Tracing carbon 

flow in an arctic marine food web using fatty acid-stable isotope analysis. Oecologia, 157(1): 117–

129. 

Buick, D.P. & L.C. Ivany. 2004. 100 years in the dark: Extreme longevity of Eocene bivalves from 

Antarctica. Geology, 32(10): 921. 

Burdon, D., R. Callaway, M. Elliott, T. Smith & A. Wither. 2014. Mass mortalities in bivalve populations: A 

review of the edible cockle Cerastoderma edule (L.). Estuar. Coast. Shelf Sci., 150(PB): 271–280. 

Bušelić, I., M. Peharda, D.J. Reynolds, P.G. Butler, A.R. González, D. Ezgeta-Balić, I. Vilibić, B. Grbec, P. 



127 

 

Hollyman & C.A. Richardson. 2015. Glycymeris bimaculata (Poli, 1795) — A new 

sclerochronological archive for the Mediterranean? J. Sea Res., 95: 139–148. 

Butler, P.G., C.A. Richardson, J.D. Scourse, A.D. Wanamaker, T.M. Shammon & J.D. Bennell. 2010. 

Marine climate in the Irish Sea: analysis of a 489-year marine master chronology derived from 

growth increments in the shell of the clam Arctica islandica. Quat. Sci. Rev., 29(13-14): 1614–1632. 

Butler, P.G. & B.R. Schöne. 2017. New research in the methods and applications of sclerochronology. 

Palaeogeogr. Palaeoclimatol. Palaeoecol., 465: 295–299. 

Butler, P.G., A.D. Wanamaker, J.D. Scourse, C.A. Richardson & D.J. Reynolds. 2011. Long-term stability of 

δ13C with respect to biological age in the aragonite shell of mature specimens of the bivalve 

mollusk Arctica islandica. Palaeogeogr. Palaeoclimatol. Palaeoecol., 302(1-2): 21–30. 

Butler, P.G., A.D. Wanamaker, J.D. Scourse, C.A. Richardson & D.J. Reynolds. 2013. Variability of marine 

climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in 

the bivalve Arctica islandica. Palaeogeogr. Palaeoclimatol. Palaeoecol., 373: 141–151. 

Canestri-Trotti, G., E.M. Baccarani, F. Paesanti & E. Turolla. 2000. Monitoring of infections by protozoa 

of the genera Nematopsis, Perkinsus and Porospora in the smooth venus clam Callista chione from 

the North-Western Adriatic Sea (Italy). Dis. Aquat. Organ., 42: 157–161. 

Cardoso, J.F.M.F., G. Nieuwland, R. Witbaard, H.W. van der Veer & J.P. Machado. 2013. Growth 

increment periodicity in the shell of the razor clam Ensis directus using stable isotopes as a method 

to validate age. Biogeosciences Discuss., 10(3): 4303–4330. 

Cardoso, J.F.M.F., S. Santos, J.I. Witte, R. Witbaard, H.W. van der Veer & J.P. Machado. 2013. Validation 

of the seasonality in growth lines in the shell of Macoma balthica using stable isotopes and trace 

elements. J. Sea Res., 82: 93–102. 

Cardoso, J.F.M.F., J.I. Witte & H.W. van der Veer. 2009a. Differential reproductive strategies of two 

bivalves in the Dutch Wadden Sea. Estuar. Coast. Shelf Sci., 84(1): 37–44. 

Cardoso, J.F.M.F., J.I. Witte & H.W. van der Veer. 2007. Growth and reproduction of the bivalve Spisula 

subtruncata (da Costa) in Dutch coastal waters. J. Sea Res., 57(4): 316–324. 

Cardoso, J.F.M.F., J.I. Witte & H.W. van der Veer. 2009b. Reproductive investment of the American razor 

clam Ensis americanus in the Dutch Wadden Sea. J. Sea Res., 62(4): 295–298. 



128 

 

Carlier, A., L. Chauvaud, M. van der Geest, F. Le Loc’h, M. Le Duff, M. Vernet, J. Raffray, D. Diakhaté, P. 

Labrosse, A. Wagué, C. Le Goff, F. Gohin, B. Chapron & J. Clavier. 2015. Trophic connectivity 

between offshore upwelling and the inshore food web of Banc d’Arguin (Mauritania): New insights 

from isotopic analysis. Estuar. Coast. Shelf Sci., 165: 149–158. 

Carlier, A., P. Riera, J. Amouroux, J. Bodiou, M. Desmalades & A. Grémare. 2008. Food web structure of 

two Mediterranean lagoons under varying degree of eutrophication. J. Sea Res., 60(4): 287–298. 

Carlier, A., P. Riera, J.J.-M. Amouroux, J.-Y. Bodiou & A. Grémare. 2007. Benthic trophic network in the 

Bay of Banyuls-sur-Mer (northwest Mediterranean, France): An assessment based on stable carbon 

and nitrogen isotopes analysis. Estuar. Coast. Shelf Sci., 72(1-2): 1–15. 

Carmichael, R.H., A.C. Shriver & I. Valiela. 2004. Changes in shell and soft tissue growth, tissue 

composition, and survival of quahogs, Mercenaria mercenaria, and softshell clams, Mya arenaria, 

in response to eutrophic-driven changes in food supply and habitat. J. Exp. Mar. Bio. Ecol., 313(1): 

75–104. 

Carreira, R.S., A.L.R. Wagener, J.W. Readman, T.W. Fileman & S.A. Macko. 2002. Changes in the 

sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an 

elemental, isotopic and molecular marker approach. Mar. Chem., 79: 207–227. 

Carriquiry, J.D., P. Jorgensen, J.A. Villaescusa & S.E. Ibarra-Obando. 2016. Isotopic and Elemental 

Composition of Marine Macrophytes as Biotracers of Nutrient Recycling Within a Coastal Lagoon in 

Baja California, Mexico. Estuaries and Coasts, 39(2): 451–461. 

Carroll, M.L., B.J. Johnson, G.A. Henkes, K.W. McMahon, A. Voronkov, W.G. Ambrose & S.G. Denisenko. 

2009. Bivalves as indicators of environmental variation and potential anthropogenic impacts in the 

southern Barents Sea. Mar. Pollut. Bull., 59(4-7): 193–206. 

Castagna, M. & J. Kraeuter. 1977. Mercenaria culture using stone aggregate for predator protection. 

Proc Natl Shellfish Ass. Proc. Natl. Shellfish. Assoc., 67: 1–6. 

Charles, F., J. Amouroux & A. Grémare. 1999. Comparative study of the utilization of bacteria and 

microalgae by the suspension-feeding bivalve: Callista chione. J. Mar. Biol. Assoc. UK, 79: 577–584. 

Chauvaud, L., A. Lorrain, R.B. Dunbar, Y.-M. Paulet, G. Thouzeau, F. Jean, J.-M. Guarini & D. Mucciarone. 

2005. Shell of the Great Scallop Pecten maximus as a high-frequency archive of 

paleoenvironmental changes. Geochemistry, Geophys. Geosystems, 6(8): Q08001. 



129 

 

Chauvaud, L., Y. Patry, A. Jolivet, E. Cam, C. Le Goff, Ø. Strand, G. Charrier, J. Thébault, P. Lazure, K. 

Gotthard & J. Clavier. 2012. Variation in size and growth of the great scallop Pecten maximus along 

a latitudinal gradient. PLoS One, 7(5): e37717. 

Chauvaud, L., G. Thouzeau & Y.-M. Paulet. 1998. Effects of environmental factors on the daily growth 

rate of Pecten maximus juveniles in the Bay of Brest (France). J. Exp. Mar. Bio. Ecol., 227: 83–111. 

Cherel, Y. & K.A. Hobson. 2007. Geographical variation in carbon stable isotope signatures of marine 

predators: a tool to investigate their foraging areas in the Southern Ocean. Mar. Ecol. Prog. Ser., 

329: 281–287. 

Chu, E.E. & J. Greaves. 1991. Metabolism of palmitic, linoleic, and linolenic acids in adult oysters, 

Crassostrea virginica. Mar. Biol., 236: 229–236. 

Cifuentes, L.A., J.H. Sharp & M.L. Fogel. 1988. Stable carbon and nitrogen isotope biogeochemistry 

Delaware estuary. Limnol. Oceanogr., 33(5): 1102–1115. 

Clarke, A. 1987. Temperature, latitude and reproductive effort. Mar. Ecol. Prog. Ser, 38: 89–99. 

Cloern, J., E. Canuel & D. Harris. 2002. Stable carbon and nitrogen isotope composition of aquatic and 

terrestrial plants of the San Francisco Bay estuarine system. Limnol. Oceanogr., 47: 713–729. 

CMEMS. Copernicus marine environment monitoring service. Available at: http://marine.copernicus.eu/ 

[Accessed January 1, 2016]. 

Coe, W.P. & H.J. Turner. 1938. Development of the gonads and gametes in the soft shell clam (Mya 

arenaria). J. Morphol., 62: 91–111. 

Connelly, T.L., T.N. Businski, D. Deibel, C.C. Parrish & P. Trela. 2016. Annual cycle and spatial trends in 

fatty acid composition of suspended particulate organic matter across the Beaufort Sea shelf. 

Estuar. Coast. Shelf Sci., 181: 170–181. 

Cortés-Sánchez, M., A. Morales-Muñiz, M.D. Simón-Vallejo, M.C. Lozano-Francisco, J.L. Vera-Peláez, C. 

Finlayson, J. Rodríguez-Vidal, A. Delgado-Huertas, F.J. Jiménez-Espejo, F. Martínez-Ruiz, M.A. 

Martínez-Aguirre, A.J. Pascual-Granged, M.M. Bergadà-Zapata, J.F. Gibaja-Bao, J.A. Riquelme-

Cantal, J.A. López-Sáez, M. Rodrigo-Gámiz, S. Sakai, S. Sugisaki, G. Finlayson, D.A. Fa & N.F. Bicho. 

2011. Earliest Known Use of Marine Resources by Neanderthals. PLoS One, 6(9): e24026. 

Cresson, P., S. Ruitton, M.F. Fontaine & M. Harmelin-Vivien. 2012. Spatio-temporal variation of 



130 

 

suspended and sedimentary organic matter quality in the Bay of Marseilles (NW Mediterranean) 

assessed by biochemical and isotopic analyses. Mar. Pollut. Bull., 64(6): 1112–1121. 

Crippa, G. 2013. The shell ultrastructure of the genus Glycymeris da Costa, 1778: A comparison between 

fossil and recent specimens. Riv. Ital. di Paleontol. e Stratigr., 119(3): 387–399. 

Crippa, G., L. Angiolini, C. Bottini, E. Erba, F. Felletti, C. Frigerio, J.A.I. Hennissen, M.J. Leng, M.R. Petrizzo, 

I. Raffi, G. Raineri & M.H. Stephenson. 2016. Seasonality fluctuations recorded in fossil bivalves 

during the early Pleistocene: Implications for climate change. Palaeogeogr. Palaeoclimatol. 

Palaeoecol., 446: 234–251. 

Crnčević, M., M. Peharda, D. Ezgeta-Balić & M. Pećarević. 2013. Reproductive cycle of Glycymeris 

nummaria (Mollusca: Bivalvia) from Mali Ston Bay, Adriatic Sea, Croatia. Sci. Mar., 77(2): 293–300. 

Cruz, P., C. Rodriguez-Jaramillo & A.M. Ibarra. 2000. Environment and population origin effects on first 

sexual maturity of catarina scallop, Argopecten ventricosus (Sowerby II, 1842). J. Shellfish Res., 

9(1): 89–94. 

Cuif, J.-P., A. Bendounan, Y. Dauphin, J. Nouet & F. Sirotti. 2013. Synchrotron-based photoelectron 

spectroscopy provides evidence for a molecular bond between calcium and mineralizing organic 

phases in invertebrate calcareous skeletons. Anal. Bioanal. Chem., 405(27): 8739–8748. 

Currin, C.A., S.Y. Newell & H.W. Paerl. 1995. The Role of Standing Dead Spartina-Alterniflora and Benthic 

Microalgae in Salt-Marsh Food Webs - Considerations Based on Multiple Stable-Isotope Analysis. 

Mar. Ecol. Ser., 121(1-3): 99–116. 

Dalsgaard, J.J., M. St John, G. Kattner, D. Müller-Navarra, W. Hagen, M.S. John, M. St. John, G. Kattner, 

D. Müller-Navarra, W. Hagen, M. St John, G. Kattner, D. Müller-Navarra & W. Hagen. 2003. Fatty 

Acid Trophic Markers in the Pelagic Marine Environment. Adv. Mar. Biol., 46: 225–340. 

Dame, R.F. 1996. Ecology of Marine Bivalves. An Ecosystem Approach Second. M. J. Kennish & P. L. Lutz, 

eds., Boca Raton, Florida: CRC Marine Science Series, CRC Press. 

Danovaro, R., A. Dell’Anno, M. Fabiano, A. Pusceddu & A. Tselepides. 2001. Deep-sea ecosystem 

response to climate changes: The eastern Mediterranean case study. Trends Ecol. Evol., 16(9): 

505–510. 

Davenport, J., R.J. Smith & M. Packer. 2000. Mussels Mytilus edulis: significant consumers and 

destroyers of mesozooplankton. Mar. Ecol. Prog. Ser., 198: 131–137. 



131 

 

Delgado, M. & A. Pérez-Camacho. 2007. Estudio comparativo del desarrollo gonadal de Ruditapes 

philippinarum (Adams and Reeve) y Ruditapes decussatus (L.) (Mollusca: Bivalvia) Influencia de la 

temperatura. Sci. Mar., 71(3): 471–484. 

DeMaster, D. 1991. Measuring biogenic silica in marine sediments and suspended matter. Mar. Part. 

Anal. Charact.: 363–367. 

DeNiro, M.J. & S. Epstein. 1978. Influence of diet on the distribution of carbon isotopes in animals. , 42: 

495–506. 

Deudero, S., M. Cabanellas, A. Blanco & S. Tejada. 2009. Stable isotope fractionation in the digestive 

gland, muscle and gills tissues of the marine mussel Mytilus galloprovincialis. J. Exp. Mar. Bio. Ecol., 

368(2): 181–188. 

Dias, E., P. Morais, A. Cotter, C. Antunes & J. Hoffman. 2016. Estuarine consumers utilize marine, 

estuarine and terrestrial organic matter and provide connectivity among these food webs. Mar. 

Ecol. Prog. Ser., 554: 21–34. 

Doi, H., M. Matsumasa, T. Toya, N. Satoh, C. Mizota, Y. Maki & E. Kikuchi. 2005. Spatial shifts in food 

sources for macrozoobenthos in an estuarine ecosystem: Carbon and nitrogen stable isotope 

analyses. Estuar. Coast. Shelf Sci., 64(2-3): 316–322. 

Dolenec, M., P. Žvab, G. Mihelčić, Ž. Lambaša Belak, S. Lojen, G. Kniewald, T. Dolenec & N. Rogan Šmuc. 

2011. Use of stable nitrogen isotope signatures of anthropogenic organic matter in the coastal 

environment: The case study of the Kosirina Bay (Murter Island, Croatia). Geol. Croat., 64: 143–

152. 

Dolenec, T., S. Lojen, G. Kniewald, M. Dolenec & N. Rogan. 2007. Nitrogen stable isotope composition as 

a tracer of fish farming in invertebrates Aplysina aerophoba, Balanus perforatus and Anemonia 

sulcata in central Adriatic. Aquaculture, 262(2-4): 237–249. 

Drent, J. 2004. The relative importance of temperature for growth and reproduction in an intertidal 

marine bivalve, Macoma balthica, along a latitudinal gradient. In: Drent J (ed) Life history variation 

of a marine bivalve (Macoma balthica) in a changing world. State University Groningen. 

Drummond, L., M. Mulcahy & S. Culloty. 2006. The reproductive biology of the Manila clam, Ruditapes 

philippinarum, from the North-West of Ireland. Aquaculture, 254(1-4): 326–340. 

Dubois, S., H. Blanchet, A. Garcia, M. Massé, R. Galois, A. Grémare, K. Charlier, G. Guillou, P. Richard & 



132 

 

N. Savoye. 2014. Trophic resource use by macrozoobenthic primary consumers within a semi-

enclosed coastal ecosystem: Stable isotope and fatty acid assessment. J. Sea Res., 88: 87–99. 

Dubois, S., N. Savoye, A. Grémare, M. Plus, K. Charlier, A. Beltoise & H. Blanchet. 2012. Origin and 

composition of sediment organic matter in a coastal semi-enclosed ecosystem: An elemental and 

isotopic study at the ecosystem space scale. J. Mar. Syst., 94: 64–73. 

Dupčić Radić, I., M. Carić, M. Najdek, N. Jasprica, J. Bolotin, M. Peharda & A. Bratoš Cetinić. 2014. 

Biochemical and fatty acid composition of Arca noae (Bivalvia: Arcidae) from the Mali Ston Bay, 

Adriatic Sea. Mediterr. Mar. Sci., 15(3): 520–531. 

El-Karim, M.S.A., A.M.A. Mahmoud & M.H.H. Ali. 2016. Fatty Acids Composition and Sources of Organic 

Matter in Surface Sediments of Four River Nile Sub-Branches, Egypt. J. Fish. Aquat. Sci., 11(3): 216–

224. 

Elliot, M., K. Welsh, C. Chilcott, M. McCulloch, J. Chappell & B. Ayling. 2009. Profiles of trace elements 

and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in 

paleoclimate studies. Palaeogeogr. Palaeoclimatol. Palaeoecol., 280(1-2): 132–142. 

Ezgeta-Balić, D., S. Lojen, T. Dolenec, P. Žvab Rožič, M. Dolenec, M. Najdek & M. Peharda. 2014. 

Seasonal differences of stable isotope composition and lipid content in four bivalve species from 

the Adriatic Sea. Mar. Biol. Res., 10(6): 625–634. 

Ezgeta-Balić, D., M. Najdek, M. Peharda & M. Blažina. 2012. Seasonal fatty acid profile analysis to trace 

origin of food sources of four commercially important bivalves. Aquaculture, 334-337: 89–100. 

Ezgeta-Balić, D., M. Peharda, C.A. Richardson, M. Kuzmanić, N. Vrgoč & I. Isajlović. 2011. Age, growth, 

and population structure of the smooth clam Callista chione in the eastern Adriatic Sea. Helgol. 

Mar. Res., 65: 457–465. 

Faganeli, J., N. Ogrinc, N. Kovac, K. Kukovec, I. Falnoga, P. Mozetic & O. Bajt. 2009. Carbon and nitrogen 

isotope composition of particulate organic matter in relation to mucilage formation in the northern 

Adriatic Sea. Mar. Chem., 114(3-4): 102–109. 

Faganeli, J., J. Pezdic, B. Ogorelec, M. Mišič & M. Najdek. 1994. The origin of sedimentary organic matter 

in the Adriatic. Cont. Shelf Res., 14(4): 365–384. 

Fahl, K. & G. Kattner. 1993. Lipid Content and fatty acid composition of algal communities in sea-ice and 

water from the Weddell Sea (Antarctica). Polar Biol., 13(6): 405–409. 



133 

 

Falk-Petersen, S., J. Sargent & K. Tande. 1987. Lipid composition of zooplankton in relation to the sub-

Arctic food web. Polar Biol., 8: 115–120. 

Fischer, A.M., J.P. Ryan, C. Levesque & N. Welschmeyer. 2014. Characterizing estuarine plume discharge 

into the coastal ocean using fatty acid biomarkers and pigment analysis. Mar. Environ. Res., 99: 

106–116. 

Focken, U. & K. Becker. 1998. Metabolic fractionation of stable carbon isotopes: implications of different 

proximate compositions for studies of the aquatic food webs using δ13C data. Oecologia, 115(3): 

337–343. 

Forster, G.R. 1981. The age and growth of Callista chione. J. Mar. Biol. Assoc. United Kingdom, 61: 881–

883. 

France, R.L. 1995. Carbon-13 enrichment in benthic compared to planktonic algae: foodweb 

implications. Mar. Ecol. Prog. Ser., 124(1-3): 307–312. 

Frangoulis, C., N. Skliris, G. Lepoint, K. Elkalay, A. Goffart, J.K. Pinnegar & J.H. Hecq. 2011. Importance of 

copepod carcasses versus faecal pellets in the upper water column of an oligotrophic area. Estuar. 

Coast. Shelf Sci., 92(3): 456–463. 

Freitas, L., M. Fernandez-Reiriz & U. Labarta. 2002. Fatty acid profiles of Mytilus galloprovincialis (Lmk) 

mussel of subtidal and rocky shore origin. Comp. Biochem. Physiol. Part B, 132: 453–461. 

Fry, B. 2006. Stable isotope ecology, New York: Springer. 

Fry, B. & Y.C. Allen. 2003. Stable isotopes in Zebra mussels as bioindicators of river-watershed linkages. 

River Res. Appl., 19(7): 683–696. 

Fry, B. & E. Sherr. 1984. δ13C measurements as indicators of carbon flow in marine and freshwater 

ecosystems. Contrib. Mar. Sci., 27: 13–47. 

Gabbott, P.A. 1975. Storage cycles in marine molluscs: a hypothesis concerning the relationship 

between glycogen metabolism and gametogenesis. In Barnes, ed. Proc 9th European Marine 

Biology Symposium. Aberdeen: Aberdeen University Press, pp. 191–211. 

Galap, C., P. Netchitaıl̈o, F. Leboulenger & J.-P. Grillot. 1999. Variations of fatty acid contents in selected 

tissues of the female dog cockle (Glycymeris glycymeris L., Mollusca, Bivalvia) during the annual 

cycle. Comp. Biochem. Physiol. Part A, 122: 241–254. 



134 

 

Galimany, E., M. Baeta, M. Durfort, J. Lleonart & M. Ramón. 2015. Reproduction and size at first 

maturity in a Mediterranean exploited Callista chione bivalve bed. Sci. Mar., 79(2): 233–242. 

Galois, R., P. Richard & B. Fricourt. 1996. Seasonal Variations in Suspended Particulate Matter in the 

Marennes-Oléron Bay, France, using Lipids as Biomarkers. Estuar. Coast. Shelf Sci., 43(3): 335–357. 

Gam, M., X. de Montaudouin & H. Bazairi. 2010. Population dynamics and secondary production of the 

cockle Cerastoderma edule: A comparison between Merja Zerga (Moroccan Atlantic Coast) and 

Arcachon Bay (French Atlantic Coast). J. Sea Res., 63(3-4): 191–201. 

Gaspar, M.B. & C.C. Monteiro. 1998. Reproductive Cycles of the Razor Clam Ensis siliqua and the Clam 

Venus striatula off Vilamoura, Southern Portugal. J. Mar. Biol. Assoc. UK: 1247–1258. 

Gaspar, M.E. 2004. Age and growth of Chamelea gallina from the Algarve coast (Southern Portugal): 

Influence of seawater temperature and gametogenic cycle on growth rate. J. Molluscan Stud., 

70(4): 371–377. 

Gillikin, D.P. 2005. Geochemistry of Marine Bivalve Shells: the potential for paleoenvironmental 

reconstruction. Chapter 10: Barium uptake into the shells of the common mussel (Mytilus edulis) 

and the potential for estuarine paleo-chemistry reconstruction. PhD thesis. University of Brussels. 

Gillikin, D.P., K.A. Hutchinson & Y. Kumai. 2009. Ontogenic increase of metabolic carbon in freshwater 

mussel shells (Pyganodon cataracta). J. Geophys. Res., 114(G1): G01007. 

Gillikin, D.P., A. Lorrain, S. Bouillon, P. Willenz & F. Dehairs. 2006. Stable carbon isotopic composition of 

Mytilus edulis shells: relation to metabolism, salinity, δ13CDIC and phytoplankton. Org. Geochem., 

37(10): 1371–1382. 

Gillikin, D.P., A. Lorrain, L. Meng & F. Dehairs. 2007. A large metabolic carbon contribution to the δ13C 

record in marine aragonitic bivalve shells. Geochim. Cosmochim. Acta, 71(12): 2936–2946. 

Gillikin, D.P., F. De Ridder, H. Ulens, M. Elskens, E. Keppens, W. Baeyens & F. Dehairs. 2005. Assessing 

the reproducibility and reliability of estuarine bivalve shells (Saxidomus giganteus) for sea surface 

temperature reconstruction: Implications for paleoclimate studies. Palaeogeogr. Palaeoclimatol. 

Palaeoecol., 228(1-2): 70–85. 

Giraldo, C., A. Stasko, E.S. Choy, B. Rosenberg, A. Majewski, M. Power, H. Swanson, L. Loseto & J.D. 

Reist. 2016. Trophic variability of Arctic fishes in the Canadian Beaufort Sea: a fatty acids and stable 

isotopes approach. Polar Biol., 39(7): 1267–1282. 



135 

 

Goman, M., B. Ingram & A. Strom. 2008. Composition of stable isotopes in geoduck (Panopea abrupta) 

shells: A preliminary assessment of annual and seasonal paleoceanographic changes in the 

northeast Pacific. Quat. Int., 188: 117–125. 

Gonçalves, A.M.M., U.M. Azeiteiro, M.A. Pardal & M. De Troch. 2012. Fatty acid profiling reveals 

seasonal and spatial shifts in zooplankton diet in a temperate estuary. Estuar. Coast. Shelf Sci., 109: 

70–80. 

Goodwin, D., B. Schöne & D. Dettman. 2003. Resolution and fidelity of oxygen isotopes as 

paleotemperature proxies in bivalve mollusk shells: models and observations. Palaios: 110–125. 

Goodwin, D.H., K.W. Flessa & B.R. Schöne. 2001. Isotope Variation, and Temperature in the Gulf of 

California Bivalve Mollusk Chione cortezi: Implications for Paleoenvironmental Analysis. Palaios, 16: 

387–398. 

Goodwin, D.H., K.W. Flessa, B.R. Schöne & D.L. Dettman. 2001. Cross-Calibration of Daily Growth 

Increments, Stable Isotope Variation, and Temperature in the Gulf of California Bivalve Mollusk 

Chione cortezi: Implications for Paleoenvironmental Analysis. Palaios, 16: 387–398. 

Goodwin, D.H., K.W. Flessa, M.A. Téllez-Duarte, D.L. Dettman, B.R. Schöne & G.A. Avila-Serrano. 2004. 

Detecting time-averaging and spatial mixing using oxygen isotope variation: a case study. 

Palaeogeogr. Palaeoclimatol. Palaeoecol., 205(1-2): 1–21. 

Gosling, E. 2003. Bivalve Molluscs. Biology, Ecology and Culture Intergovernmental Panel on Climate 

Change, ed., Cambridge: Cambridge University Press. 

Gosling, E. 2015. Marine Bivalve Molluscs Second Edi. J. Wiley & Sons, ed., West Sussex, England. 

Goud, J. & G. Gulden. 2009. Description of a new species of Glycymeris (Bivalvia: Arcoidea) from 

Madeira, Selvagens and Canary Islands. Zool. Meded., 83(1997): 1059–1066. 

Grall, J., F. Le Loc’h, B. Guyonnet & P. Riera. 2006. Community structure and food web based on stable 

isotopes (δ15N and δ13C) analysis of a North Eastern Atlantic maerl bed. J. Exp. Mar. Bio. Ecol., 

338(1): 1–15. 

Gray, A., R. Seed & C. Richardson. 1997. Reproduction and growth of Mytilus edulis chilensis from the 

Falkland Islands. Sci. Mar., 61(2): 39–48. 

Gribben, P.E., J. Helson & A.G. Jeffs. 2004. Reproductive cycle of the New Zealand Geoduck, Panopea 



136 

 

zelandica, in two North Island populations. Veliger, 47: 53–65. 

Grossman, E.L. & T.-L. Ku. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: 

Temperature effects. Chem. Geol. Isot. Geosci. Sect., 59(February 2016): 59–74. 

Guest, M.A., R.M. Connolly & N.R. Loneragan. 2004. Carbon movement and assimilation by 

invertebrates in estuarine habitats at a scale of metres. Mar. Ecol. Prog. Ser., 278(Odum 1979): 27–

34. 

Gutierrez-Mas, J.M. 2011. Glycymeris shell accumulations as indicators of recent sea-level changes and 

high-energy events in Cadiz Bay (SW Spain). Estuar. Coast. Shelf Sci., 92(4): 546–554. 

Gutt, J. 2006. Coexistence of macro-zoobenthic species on the Antarctic shelf: an attempt to link 

ecological theory and results. Deep Sea Res. II, 53: 1009–1028. 

Hall, C.A., W.A. Dollase & C.E. Corbató. 1974. Shell growth in Tivela stultorum (Mawe, 1823) and Callista 

chione (Linnaeus, 1758) (Bivalvia): annual periodicity, latitudinal differences, and diminution with 

age. Palaeogeogr. Palaeoclimatol. Palaeoecol., 15: 33–61. 

Hallmann, N., B.R. Schöne, A. Strom & J. Fiebig. 2008. An intractable climate archive — 

Sclerochronological and shell oxygen isotope analyses of the Pacific geoduck, Panopea abrupta 

(bivalve mollusk) from Protection Island (Washington State, USA). Palaeogeogr. Palaeoclimatol. 

Palaeoecol., 269(1-2): 115–126. 

Hamer, B., D. Medaković, D. Pavičić-Hamer, Ž. Jakšić, M. Štifanić, V. Nerlović, A. Travizi, R. Precali & K. 

Tjaša. 2010. Estimation of freshwater influx along the eastern Adriatic coast as a possible source of 

stress for marine organisms. Acta Adriat., 51(2): 191–194. 

Hammer, Ø., D. Harper & P. Ryan. 2001. Past: Palaeontological Statistics Software Package for Education 

and Data Analysis. Palaeontol. Electron., 4(1): 9pp. 

Harmelin-Vivien, M., V. Loizeau, C. Mellon, B. Beker, D. Arlhac, X. Bodiguel, F. Ferraton, R. Hermand, X. 

Philippon & C. Salen-Picard. 2008. Comparison of C and N stable isotope ratios between surface 

particulate organic matter and microphytoplankton in the Gulf of Lions (NW Mediterranean). Cont. 

Shelf Res., 28(August): 1911–1919. 

Hedges, J.I., R.G. Keil & R. Benner. 1997. What happens to terrestrial organic matter in the ocean? Org. 

Geochem., 27(5): 195–212. 



137 

 

Honkoop, P. & J. van der Meer. 1998. Experimentally induced effects of water temperature and 

immersion time on reproductive output of bivalves in the Wadden Sea. J. Exp. Mar. Bio. Ecol., 

220(2): 227–246. 

Honkoop, P.J.C. & J.J. Beukema. 1997. Loss of body mass in winter of three interdital bivalve species: an 

experimental and observational study of the interacting effects between water temperature, 

feeding time and feeding behaviour. J. Exp. Mar. Biol. Ecol., 212: 277–297. 

Hori, M., Y. Sano, A. Ishida, N. Takahata, K. Shirai & T. Watanabe. 2015. Middle Holocene daily light cycle 

reconstructed from the strontium/calcium ratios of a fossil giant clam shell. Sci. Rep., 5: 8734. 

Huber, M. 2010. Compendium of Bivalves, Germany: ConchBooks. 

Iglesias, J.I.P. & E. Navarro. 1991. Energetics of growth and reproduction in cockles (Cerastoderma 

edule): seasonal and age-dependent variations. Mar. Biol.: 359–368. 

IPCC. 2014. Climate Change: 2014: Synthesis Report. Contribution of Working Groups I, II and III to the 

Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Geneva, Switzerland. 

Ivany, L.C., B.H. Wilkinson & D.S. Jones. 2003. Using Stable Isotopic Data to Resolve Rate and Duration of 

Growth throughout Ontogeny: An Example from the Surf Clam, Spisula solidissima. Palaios, 18(2): 

126–137. 

Jablonski, D. 1996. Body size and macroevolution. In D. et al. Jablonski, ed. Evolutionary Paleobiology. 

Chicago: University of Chicago Press, pp. 256–289. 

Jackson, A.L., R. Inger, A.C. Parnell & S. Bearhop. 2011. Comparing isotopic niche widths among and 

within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol., 80: 595–602. 

Jacob, D.E., A.L. Soldati, R. Wirth, J. Huth, U. Wehrmeister & W. Hofmeister. 2008. Nanostructure, 

composition and mechanisms of bivalve shell growth. Geochim. Cosmochim. Acta, 72(22): 5401–

5415. 

Jokela, J. & P. Mutikainen. 1995. Phenotypic plasticity and priority rules for energy allocation in a 

freshwater clam: a field experiment. Oecologia, 104(1): 122–132. 

Jones, C.G., J.H. Lawton & M. Shachak. 1994. Organisms as ecosystem engineers. Oikos, 69: 373–386. 

Jones, D.S. 1980. Annual cycle of shell growth increment formation in two continental shelf bivalves and 

its paleoecologic significance. Paleobiology, 6(03): 331–340. 



138 

 

Jones, D.S., D.F. Williams & M.A. Arthur. 1983. Growth history and ecology of the Atlantic surf clam, 

Spisula solidissima (Dillwyn), as revealed by stable isotopes and annual shell increments. J. Exp. 

Mar. Bio. Ecol., 73(3): 225–242. 

Jones, D.S.D. & I.R. Quitmyer. 1996. Marking Time with Bivalve Shells: Oxygen Isotopes and Season of 

Annual Increment Formation. Palaios, 11(4): 340. 

Jones, S.J., F.P. Lima & D.S. Wethey. 2010. Rising environmental temperatures and biogeography: 

poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J. 

Biogeogr., 37: 2243–2259. 

Jurić, I., I. Bušelić, D. Ezgeta-Balić, N. Vrgoč & M. Peharda. 2012. Age, Growth and Condition Index of 

Venerupis decussata (Linnaeus, 1758) in the Eastern Adriatic Sea. Turkish J. Fish. Aquat. Sci., 12(3). 

Kaiser, M.J., K. Ramsay, C.A. Richardson, F.E. Spence & A.R. Brand. 2000. Chronic fishing disturbance has 

changed shelf sea benthic community structure. J. Anim. Ecol., 69(3): 494–503. 

Kalish, J. 1991. 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Mar. Ecol. 

Prog. Ser., 75: 191–203. 

Kang, C., J. Kim, K. Lee, P. Lee & J. Hong. 2003. Trophic importance of benthic microalgae to 

macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Mar. Ecol. 

Prog. Ser., 259: 79–92. 

Kang, C.K., P. Sauriau, P. Richard & G.F. Blanchard. 1999. Food sources of the infaunal suspension-

feeding bivalve Cerastoderma edule in a muddy sandflat of Marennes-Oléron Bay, as determined 

by analyses of carbon and nitrogen stable isotopes. Mar. Ecol. Prog. Ser., 187: 147–158. 

Kasai, A., H. Horie & W. Sakamoto. 2004. Selection of food sources by Ruditapes philippinarum and 

Mactra veneriformis (Bivalva: Mollusca) determined from stable isotope analysis. Fish. Sci., 70(1): 

11–20. 

Kaustuv, R., D. Jablonski & J.W. Valentine. 2001. Climate change, species range limits and body size in 

marine bivalves. Ecol. Lett., 4: 366–370. 

Kayama, M., S. Araki & S. Sato. 1989. Lipids of marine plants. In R. Ackman, ed. Marine Biogenic Lipids, 

Fats, and Oils, vol. II. Boca Raton: CRC Press, pp. 4–47. 

Keller, N., D. Del Piero & A. Longinelli. 2002. Isotopic composition, growth rates and biological behaviour 



139 

 

of Chamelea gallina and Callista chione from the Gulf of Trieste (Italy). Mar. Biol., 140: 9–15. 

Kelly, J.R. & R.E. Scheibling. 2012. Fatty acids as dietary tracers in benthic food webs. Mar. Ecol. Prog. 

Ser., 446: 1–22. 

Kerhervé, P., M. Minagawa, S. Heussner & A. Monaco. 2001. Stable isotopes (13C/12C and 15N/14N) in 

settling organic matter of the northwestern Mediterranean Sea: biogeochemical implications. 

Oceanol. Acta, 24S: 77–85. 

Kharlamenko, V., N. Zhukova, S. Khotimchenko, V. Svetashev & G. Kamenev. 1995. Fatty acids as 

markers of food sources in a shallow-water hydrothermal ecosystem (Kraternaya Bight, Yankich 

Island, Kurile Islands). Mar. Ecol. Prog. Ser., 120: 231–241. 

Kharlamenko, V.I., S.I. Kiyashko, A.B. Imbs & D.I. Vyshkvartzev. 2001. Identification of food sources of 

invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope 

ratio and fatty acid analyses. Mar. Ecol. Prog. Ser., 220: 103–117. 

Kharlamenko, V.I., S.I. Kiyashko, S.A. Rodkina & A.B. Imbs. 2008. Determination of food sources of 

marine invertebrates from a subtidal sand community using analyses of fatty acids and stable 

isotopes. Russ. J. Mar. Biol., 34(2): 101–109. 

Kharlamenko, V.I., S.I. Kiyashko, S.A. Rodkina & V.I. Svetashev. 2011. The composition of fatty acids and 

stable isotopes in the detritophage Acila insignis (Gould, 1861) (Bivalvia: Nuculidae): Searching for 

markers of a microbial food web. Russ. J. Mar. Biol., 37(3): 201–208. 

Koike, H. 1980. Seasonal dating by growth line counting of the bivalve, Meretrix lusoria. Univ. Tokio Bull., 

18: 1–20. 

Krom, M.D., B. Herut & R.F.C. Mantoura. 2004. Nutrient budget for the Eastern Mediterranean: 

Implications for phosphorus limitation. Limnol. Oceanogr., 49(5): 1582–1592. 

Kubota, K., K. Shirai, N. Murakami-Sugihara, K. Seike, M. Hori & K. Tanabe. 2017. Annual shell growth 

pattern of the Stimpson’s hard clam Mercenaria stimpsoni as revealed by sclerochronological and 

oxygen stable isotope measurements. Palaeogeogr. Palaeoclimatol. Palaeoecol., 465: 307–315. 

Langdon, C. & R. Newell. 1990. Utilization of detritus and bacteria as food sources by two bivalve 

suspension-feeders, the oyster Crassostrea virginica and the mussel Geukensia demissa. Mar. Ecol. 

Prog. Ser., 58: 299–310. 



140 

 

Lartaud, F., L. Emmanuel, M. de Rafelis, S. Pouvreau & M. Renard. 2010. Influence of food supply on the 

δ13C signature of mollusc shells: implications for palaeoenvironmental reconstitutions. Geo-Marine 

Lett., 30(1): 23–34. 

Layman, C. a., M.S. Araujo, R. Boucek, C.M. Hammerschlag-Peyer, E. Harrison, Z.R. Jud, P. Matich, A.E. 

Rosenblatt, J.J. Vaudo, L. a. Yeager, D.M. Post & S. Bearhop. 2012. Applying stable isotopes to 

examine food-web structure: An overview of analytical tools. Biol. Rev., 87: 545–562. 

Leblanc, K., B. Quéguiner, N. Garcia, P. Rimmelin & P. Raimbault. 2003. Silicon cycle in the NW 

Mediterranean Sea: Seasonal study of a coastal oligotrophic site. Oceanol. Acta, 26: 339–355. 

Lécuyer, C., V. Daux, P. Moissette, J.-J. Cornée, F. Quillévéré, E. Koskeridou, F. Fourel, F. Martineau & B. 

Reynard. 2012. Stable carbon and oxygen isotope compositions of invertebrate carbonate shells 

and the reconstruction of paleotemperatures and paleosalinities—A case study of the early 

Pleistocene of Rhodes, Greece. Palaeogeogr. Palaeoclimatol. Palaeoecol., 350-352: 39–48. 

Lee Van Dover, C., J. Grassle, B. Fry, R. Garritt & V. Starczak. 1992. Stable isotope evidence for entry of 

sewage-derived organic material into a deep-sea food web. Nature, 356: 133–135. 

Legac, M. & I. Fabijanić. 1994. Contribution to knowledge on the bivalve Glycymeris bimaculata (Poli, 

1795) in Pag Bay. Period. Biol., 96(4): 450–451. 

Legac, M. & M. Hrs-Brenko. 1999. A review of Bivalve species in the eastern Adriatic Sea. Nat. Croat., 

8(1): 9–25. 

Leontarakis, P.K. & C.A. Richardson. 2005. Growth of the smooth clam, Callista chione (Linnaeus, 1758) 

(Bivalvia: Veneridae) from the Thracian Sea, northeastern Mediterranean. J. Molluscan Stud., 71: 

189–192. 

Léveillé, J., C. Amblard & G. Bourdier. 1997. Fatty acids as specific algal markers in a natural lacustrian 

phytoplankton. J. Plankton Res., 19(4): 469–490. 

Levitan, D.R. 1993. The importance of sperm limitation to the evolution of egg size in marine 

invertebrates. Am. Nat., 141: 517–536. 

Lewis, D.E. & R.M. Cerrato. 1997. Growth uncoupling and the relationship between shell growth and 

metabolism in the soft shell clam Mya arenaria. Mar. Ecol. Prog. Ser., 158: 177–189. 

Li, X., X. Fan, L. Han & Q. Lou. 2002. Fatty acids of some algae from the Bohai Sea. Phytochemistry, 59(2): 



141 

 

157–161. 

Liénart, C., N. Susperregui, V. Rouaud, J. Cavalheiro, V. David, Y. Del Amo, R. Duran, B. Lauga, M. 

Monperrus, T. Pigot, S. Bichon, K. Charlier & N. Savoye. 2016. Dynamics of particulate organic 

matter in a coastal system characterized by the occurrence of marine mucilage – A stable isotope 

study. J. Sea Res., 116: 12–22. 

Lopez, N., J. Navarro, C. Barria, M. Albo-Puigserver, M. Coll & I. Palomera. 2016. Feeding ecology of two 

demersal opportunistic predators coexisting in the northwestern Mediterranean Sea. Estuar. 

Coast. Shelf Sci., 175: 15–23. 

Lord, J. & R. Whitlatch. 2014. Latitudinal patterns of shell thickness and metabolism in the eastern 

oyster Crassostrea virginica along the east coast of North America. Mar. Biol., 161(7): 1487–1497. 

Lorenzen, C. & S. Jeffrey. 1978. Determination of chlorophyll in seawater. Unesco Tech. Pap. Mar. Sci.: 

20pp. 

Lorrain, A., Y. Paulet, L. Chauvaud, N. Savoye, A. Donval & C. Saout. 2002. Differential δ13C and δ15N 

signatures among scallop tissues: implications for ecology and physiology. J. Exp. Mar. Bio. Ecol., 

275: 47–61. 

Lorrain, A., Y.-M. Paulet, L. Chauvaud, R. Dunbar, D. Mucciarone & M. Fontugne. 2004. δ13C variation in 

scallop shells: Increasing metabolic carbon contribution with body size? Geochim. Cosmochim. 

Acta, 68(17): 3509–3519. 

Lorrain, A., N. Savoye, L. Chauvaud, Y. Paulet & N. Naulet. 2003. A decarbonation and preservation 

method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated 

suspended particulate material. Anal. Chim. Acta, 491(February): 125–133. 

Lucas, A. 1965. Recherche sur la sexualité des mollusques bivalves. PhD thesis. Université de Rennes. 

MacDonald, B. & R. Thompson. 1986. Influence of temperature and food availability on the ecological 

energetics of the giant scallop Placopecten magellanicus. I. Growth rates of shell and somatic 

tissue. Mar. Ecol. Prog. Ser., 25: 279–94. 

MacKenzie, K.M., M.R. Palmer, A. Moore, A.T. Ibbotson, W.R.C. Beaumont, D.J.S. Poulter & C.N. 

Trueman. 2011. Locations of marine animals revealed by carbon isotopes. Sci. Rep., 1(1): 21. 

Magalhães, L., R. Freitas & X. de Montaudouin. 2016. Cockle population dynamics: recruitment predicts 



142 

 

adult biomass, not the inverse. Mar. Biol., 163(1): 16. 

Mannino, M.A., K.D. Thomas, M.J. Leng & H.J. Sloane. 2008. Shell growth and oxygen isotopes in the 

topshell Osilinus turbinatus: Resolving past inshore sea surface temperatures. Geo-Marine Lett., 

28: 309–325. 

Marchitto, T.M., G.A. Jones, G.A. Goodfriend & C.R. Weidman. 2000. Precise Temporal Correlation of 

Holocene Mollusk Shells Using Sclerochronology. Quat. Res., 53(2): 236–246. 

Marsden, I. & R. Pilkington. 1995. Spatial and temporal variations in the condition of Austrovenus 

stutchburyi Finlay, 1927 (Bivalvia: Veneridae) from the Avon–Heathcote estuary, Christchurch. N.Z. 

Nat. Sci., 22: 57–67. 

Martínez del Rio, C., N. Wolf, S.A. Carleton & L.Z. Gannes. 2009. Isotopic ecology ten years after a call for 

more laboratory experiments. Biol. Rev., 84(1): 91–111. 

Martínez-Pita, I., C. Sánchez-Lazo, E. Prieto & O. Moreno. 2011. The effect of diet on gonadal 

development of the smooth Venus clam Callista chione (Mollusca: Bivalvia). J. Shellfish Res., 30(2): 

295–301. 

Matijević, S., G. Kušpilić, M. Morović, B. Grbec, D. Bogner, S. Skejić & J. Veža. 2009. Physical and 

chemical properties of the water column and sediments at sea bass/sea bream farm in the middle 

Adriatic (Maslinova Bay). Acta Adriat., 50(1): 59–76. 

Mayzaud, P., J. Chanut & R. Ackman. 1989. Seasonal changes of the biochemical composition of marine 

particulate matter with special reference to fatty acids and sterols. Mar. Ecol. Prog. Ser., 56: 189–

204. 

McConnaughey, T. a, J. Burdett, J.F. Whelan & C.K. Paull. 1997. Carbon isotopes in biological carbonates: 

respiration and photosynthesis. Geochim. Cosmochim. Acta, 61(3): 611–622. 

McConnaughey, T.A. & D.P. Gillikin. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine 

Lett., 28: 287–299. 

McCutchan, J.H., W.M. Lewis, C. Kendall & C.C. McGrath. 2003. Variation in trophic shift for stable 

isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102: 378–390. 

Metaxatos, A. 2004. Population dynamics of the venerid bivalve Callista chione (L.) in a coastal area of 

the eastern Mediterranean. J. Sea Res., 52(4): 293–305. 



143 

 

Milano, S., B.R. Schöne & R. Witbaard. 2017. Changes of shell microstructural characteristics of 

Cerastoderma edule (Bivalvia) — A novel proxy for water temperature. Palaeogeogr. 

Palaeoclimatol. Palaeoecol., 465: 395–406. 

Miller, D.C., R.J. Geider & H.L. MacIntyre. 1996. Microphytobenthos: The Ecological Role of the “Secret 

Garden” of Unvegetated, Shallow-Water Marine Habitats. II. Role in Sediment Stability and 

Shallow-Water Food Webs. Estuaries, 19(2): 202. 

Miller, R.J. & H.M. Page. 2012. Kelp as a trophic resource for marine suspension feeders: a review of 

isotope-based evidence. Mar. Biol., 159(7): 1391–1402. 

Minagawa, M. & E. Wada. 1986. Nitrogen isotope ratios of red tide organisms in the East China Sea: a 

characterization of biological nitrogen fixation. Mar. Chem., 19: 245–249. 

Minagawa, M. & E. Wada. 1984. Stepwise enrichment of 15N along food chains: Further evidence and 

the relation between δ15N and animal age. Geochim. Cosmochim. Acta, 48(5): 1135–1140. 

Mladineo, I., M. Peharda, S. Orhanović, J. Bolotin, M. Pavela-Vrančić & B. Treursić. 2007. The 

reproductive cycle, condition index and biochemical composition of the horse-bearded mussel 

Modiolus barbatus. Helgol. Mar. Res., 61(3): 183–192. 

Möbius, J. 2013. Isotope fractionation during nitrogen remineralization (ammonification): Implications 

for nitrogen isotope biogeochemistry. Geochim. Cosmochim. Acta, 105: 422–432. 

Moerdijk, P.W., A.D. Freddy, L. Dall, G. Newton & G. Newton. 2000. Glycymerididae (Mollusca, Bivalvia) 

from the North Sea Basin Family. Contr Tert Quatern Geol, 37: 3–21. 

De Montaudouin, X. 1996. Factors involved in growth plasticity of cockles Cerastoderma edule (L.), 

identified by field survey and transplant experiments. J. Sea Res., 36(3-4): 251–265. 

Montoya, J.P., E.J. Carpenter & D.G. Capone. 2002. Nitrogen fixation and nitrogen isotope abundances in 

zooplankton of the oligotrophic North Atlantic. Limnol. Oceanogr., 47(6): 1617–1628. 

Morgan, E., R.M. O’ Riordan & S.C. Culloty. 2013. Climate change impacts on potential recruitment in an 

ecosystem engineer. Ecol. Evol., 3(3): 581–594. 

Morris, D. 1978. The respiratory physiology of the subtidal bivalves Glycymeris glycymeris (L.), Anomia 

ephippium L. and Modiolus modiolus L. Liverpool University. 

Mortlock, R.A. & P.N. Froelich. 1989. A simple method for the rapid determination of biogenic opal in 



144 

 

pelagic marine sediments. Deep Sea Res. Part A. Oceanogr. Res. Pap., 36(9): 1415–1426. 

Moura, P., M.B. Gaspar & C.C. Monteiro. 2009. Age determination and growth rate of a Callista chione 

population from the southwestern coast of Portugal. Aquat. Biol., 5: 97–106. 

Moura, P., M.B. Gaspar & C.C. Monteiro. 2008. Gametogenic cycle of the smooth clam Callista chione on 

the south-western coast of Portugal. J. Mar. Biol. Assoc. UK, 88(1): 161–167. 

Mutvei, H., E. Dunca, H. Timm & T. Slepukhina. 1996. Structure and growth rates of bivalve shells as 

indicators of environmental changes and pollution. Bull. du Musée océanographique Monaco, 14: 

65–72. 

Nadon, M.-O. & J.H. Himmelman. 2006. Stable isotopes in subtidal food webs: Have enriched carbon 

ratios in benthic consumers been misinterpreted? Limnol. Oceanogr., 51(6): 2828–2836. 

Najdek, M. 1993. Factors influencing fatty acid and hydrocarbon composition of sedimenting particles in 

the northeastern Adriatic Sea. Mar. Chem., 41: 299–310. 

Najdek, M., M. Blažina, D. Ezgeta-Balić & M. Peharda. 2013. Diets of fan shells (Pinna nobilis) of different 

sizes: fatty acid profiling of digestive gland and adductor muscle. Mar. Biol., 160(4): 921–930. 

Najdek, M., D. Debobbis, D. Mioković & I. Ivančić. 2002. Fatty acid and phytoplankton compositions of 

different types of mucilaginous aggregates in the northern Adriatic. J. Plankton Res., 24: 429–441. 

Najdek, M., D. Ezgeta-Balić, M. Blažina, M. Crnčević & M. Peharda. 2016. Potential food sources of 

Glycymeris nummaria (Mollusca: Bivalvia) during the annual cycle indicated by fatty acid analysis. 

Sci. Mar., 80(1): 123–129. 

Napolitano, G.E., R.J. Pollero, A.M. Gayoso, B.A. MacDonald & R.J. Thompson. 1997. Fatty acids as 

trophic markers of phytoplankton blooms in the Bahia Blanca estuary (Buenos Aires, Argentina) 

and in Trinity Bay (Newfoundland, Canada). Biochem. Syst. Ecol., 25(8): 739–755. 

Navarro, E., S. Méndez, M.B. Urrutia, U. Arambalza & I. Ibarrola. 2016. Digestive selection underlies 

differential utilization of phytoplankton and sedimentary organics by infaunal bivalves: 

Experiments with cockles (Cerastoderma edule) using cross-labelled mixed diets. Mar. Environ. 

Res., 120: 111–121. 

Nerot, C., A. Lorrain, J. Grall, D.P. Gillikin, J.-M. Munaron, H. Le Bris & Y.-M. Paulet. 2012. Stable isotope 

variations in benthic filter feeders across a large depth gradient on the continental shelf. Estuar. 



145 

 

Coast. Shelf Sci., 96: 228–235. 

Newton, P.P., R.S. Lampitt, T.D. Jickells, P. King & C. Boutle. 1994. Temporal and Spatial Variability of 

Biogenic Particle Fluxes during the JGOFS Northeast Atlantic Process Studies at 47°N, 20°W. Deep. 

Res. Part I-Oceanographic Res. Pap., 41(11-12): 1617–1642. 

Nicol, D. 1964. An essay on size of marine pelecypods. J. Paleontol., 38(5): 968–974. 

Ninčević Gladan, Ž., I. Marasović, B. Grbec, S. Skejić, M. Bužančić, G. Kušpilić, S. Matijević & F. Matić. 

2009. Inter-decadal Variability in Phytoplankton Community in the Middle Adriatic (Kaštela Bay) in 

Relation to the North Atlantic Oscillation. Estuaries and Coasts, 33(2): 376–383. 

Ninčević-Gladan, Ž., M. Bužančić, G. Kušpilić, B. Grbec, S. Matijević, S. Skejić, I. Marasović & M. Morović. 

2015. The response of phytoplankton community to anthropogenic pressure gradient in the coastal 

waters of the eastern Adriatic Sea. Ecol. Indic., 56: 106–115. 

Nishida, K., T. Ishimura, A. Suzuki & T. Sasaki. 2012. Seasonal changes in the shell microstructure of the 

bloody clam, Scapharca broughtonii (Mollusca: Bivalvia: Arcidae). Palaeogeogr. Palaeoclimatol. 

Palaeoecol., 363-364: 99–108. 

Nolf, F. & F. Swinnen. 2013. The Glycymerididae of the NE Atlantic and the Mediterranean Sea. 

Neptunea, 12(2): 1–35. 

Ogrinc, N., G. Fontolan, J. Faganeli & S. Covelli. 2005. Carbon and nitrogen isotope compositions of 

organic matter in coastal marine sediments (the Gulf of Trieste, N Adriatic Sea): indicators of 

sources and preservation. Mar. Chem., 95(3-4): 163–181. 

Okaniwa, N., T. Miyaji, T. Sasaki & K. Tanabe. 2010. Shell growth and reproductive cycle of the 

Mediterranean mussel Mytilus galloprovincialis in Tokyo Bay, Japan: relationship with 

environmental conditions. Plankt. Benthos Res., 5: 214–220. 

Orvain, F., S. Lefebvre, J. Montepini, M. Sébire, A. Gangnery & B. Sylvand. 2012. Spatial and temporal 

interaction between sediment and microphytobenthos in a temperate estuarine macro-intertidal 

bay. Mar. Ecol. Prog. Ser., 458: 53–68. 

Oschmann, W. 2009. Sclerochronology: editorial. Int. J. Earth Sci., 98: 1–2. 

Page, H.M. & M. Lastra. 2003. Diet of intertidal bivalves in the Ria de Arosa (NW Spain): Evidence from 

stable C and N isotope analysis. Mar. Biol., 143: 519–532. 



146 

 

Palacios, R., I. Racotta, E. Kraffe, Y. Marty, J. Moal & J. Samain. 2005. Lipid composition of the giant lion’s 

paw scallop (Nodipecten subnodosus) in relation to gametogenesis I. Fatty acids. Aquaculture, 250: 

270–282. 

Pantoja, S., D.J. Repeta, J.P. Sachs & D.M. Sigman. 2002. Stable isotope constraints on the nitrogen cycle 

of the Mediterranean Sea water column. Deep. Res. I, 49: 1609–1621. 

Parnell, A.C., R. Inger, S. Bearhop & A.L. Jackson. 2010. Source partitioning using stable isotopes: Coping 

with too much variation. PLoS One, 5(3): 1–5. 

Parrish, C., T. Abrajano, S. Budge, R. Helleur, E. Hudson, K. Pulchan & C. Ramos. 2000. Lipid and phenolic 

biomarkers in marine ecosystems: analysis and applications. In P. Wangersky, ed. The Handbook of 

Environmental Chemistry. Berlin: Springer, pp. 193–223. 

Parrish, C., C. McKenzie, B. MacDonald & E. Hatfield. 1996. Seasonal studies of seston lipids in relation to 

microplankton species composition and scallop growth in South Broad Cove, Newfoundland. Mar. 

Ecol. Prog. Ser., 129: 151–164. 

Paulet, Y.M., A. Lorrain, J. Richard & S. Pouvreau. 2006. Experimental shift in diet δ13C: A potential tool 

for ecophysiological studies in marine bivalves. Org. Geochem., 37(10): 1359–1370. 

Paulet, Y.-M., A. Lucas & A. Gerard. 1988. Reproduction and larval development in two Pecten maximus 

(L.) populations from Brittany. J. Exp. Mar. Bio. Ecol., 119: 145–156. 

Peharda, M., B.A. Black, A. Purroy & H. Mihanović. 2016. The bivalve Glycymeris pilosa as a multidecadal 

environmental archive for the Adriatic and Mediterranean Seas. Mar. Environ. Res., 119: 79–87. 

Peharda, M., M. Crnčević, I. Bušelić, C.A. Richardson & D. Ezgeta-Balić. 2012. Growth And Longevity of 

Glycymeris nummaria (Linnaeus, 1758) from the Eastern Adriatic, Croatia. J. Shellfish Res., 31(4): 

947–950. 

Peharda, M., D. Ezgeta-Balić, J. Davenport, N. Bojanić, O. Vidjak & Ž. Ninčević-Gladan. 2012. Differential 

ingestion of zooplankton by four species of bivalves (Mollusca) in the Mali Ston Bay, Croatia. Mar. 

Biol., 159(4): 881–895. 

Peharda, M., D. Ezgeta-Balić, M. Radman, N. Sinjkević, N. Vrgoč & I. Isajlović. 2012. Age, growth and 

population structure of Acanthocardia tuberculata (Bivalvia: Cardiidae) in the eastern Adriatic Sea. 

Sci. Mar., 76(March): 59–66. 



147 

 

Peharda, M., D. Ezgeta-Balić, N. Vrgoč & I. Isajlović. 2010. Description of bivalve community structure in 

the Croatian part of the Adriatic Sea-hydraulic dredge survey. Acta Adriat., 51(2): 141–158. 

Peharda, M., D. Ezgeta-Balić, N. Vrgoč, I. Isajlović & D. Bogner. 2010. Description of bivalve community 

structure in the Croatian part of the Adriatic Sea - hydraulic dredge survey. Acta Adriat., 51(2): 

141–158. 

Peharda, M., I. Mladineo, L. Kekez, J. Bolotin, L. Kekez & B. Skaramuca. 2006. The reproductive cycle and 

potential protandric development of the Noah’s Ark shell, Arca noae L.: Implications for 

aquaculture. Aquaculture, 252(2-4): 317–327. 

Peharda, M., Z. Popović, D. Ezgeta-Balić, N. Vrgoć, S. Puljas & A. Frankić. 2013. Age and growth of Venus 

verrucosa (Bivalvia: Veneridae) in the eastern Adriatic Sea. Cah. Biol. Mar., 1: 281–286. 

Peharda, M., S. Puljas, L. Chauvaud, B.R. Schöne, D. Ezgeta-Balić & J. Thébault. 2015. Growth and 

longevity of Lithophaga lithophaga: what can we learn from shell structure and stable isotope 

composition? Mar. Biol., 162: 1531–1540. 

Peharda, M., C. Richardson, V. Onofri, A. Bratos & M. Crnčević. 2002. Age and growth of the bivalve Arca 

noae in the Croatian Adriatic Sea. J. Molluscan Stud., 68: 307–310. 

Peharda, M., C.A. Richardson, I. Mladineo, S. Šestanović, Z. Popović, J. Bolotin & N. Vrgoč. 2007. Age, 

growth and population structure of Modiolus barbatus from the Adriatic. Mar. Biol., 151(2): 629–

638. 

Peharda, M., A. Soldo, A. Pallaoro, S. Matić & P. Cetinić. 2003. Age and growth of the Mediterranean 

scallop Pecten jacobaeus (Linnaeus 1758) in the Northern Adriatic Sea. J. Shellfish Res., 22(3): 639–

642. 

Peharda, M., N. Stagličić & D. Ezgeta. 2009. Distribution and population structure of Arca noae in the 

Pašman channel. Ribarstvo, 124(1): 3–10. 

Peharda, M., I. Župan, L. Bavčević, A. Frankić & T. Klanjsč̆ek. 2007. Growth and condition index of mussel 

Mytilus galloprovincialis in experimental integrated aquaculture. Aquac. Res., 38: 1714–1720. 

Pérez, V., F. Olivier, R. Tremblay, U. Neumeier, J. Thébault, L. Chauvaud & T. Meziane. 2013. Trophic 

resources of the bivalve, Venus verrucosa, in the Chausey archipelago (Normandy, France) 

determined by stable isotopes and fatty acids. Aquat. Living Resour., 26(3): 229–239. 



148 

 

Pernet, F., N. Malet, A. Pastoureaud, A. Vaquer, C. Quéré & L. Dubroca. 2012. Marine diatoms sustain 

growth of bivalves in a Mediterranean lagoon. J. Sea Res., 68: 20–32. 

Peters, E., P. Yevich, J. Harshbarger & G. Zaroogian. 1994. Comparative histopathology of gonadal 

neoplasms in marine bivalve molluscs. Dis. Aquat. Organ., 20: 59–76. 

Peterson, B.J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: 

A review. Acta Oecologica, 20(4): 479–487. 

Peterson, B.J. & B. Fry. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18: 293–320. 

Peterson, C., P. Duncan, H. Summerson & G. Safrit. 1983. A mark-recapture test of annual periodicity of 

internal growth band deposition in shells of hard clams, Mercenaria mercenaria, from a population 

along the southeastern United States. Fish. Bull., 81(4): 765–779. 

Philippart, C.J.M., H.M. van Aken, J.J. Beukema, O.G. Bos, G.C. Cadée & R. Dekker. 2003. Climate-related 

changes in recruitment of the bivalve Macoma balthica. Limnol. Oceanogr., 48(6): 2171–2185. 

Philippart, C.J.M., R. Anadón, R. Danovaro, J.W. Dippner, K.F. Drinkwater, S.J. Hawkins, T. Oguz, G. 

O’Sullivan & P.C. Reid. 2011. Impacts of climate change on European marine ecosystems: 

Observations, expectations and indicators. J. Exp. Mar. Bio. Ecol., 400(1-2): 52–69. 

Phillips, D.L., R. Inger, S. Bearhop, A.L. Jackson, J.W. Moore, A.C. Parnell, B.X. Semmens & E.J. Ward. 

2014. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool., 

92(10): 823–835. 

Pirini, M., M.P. Manuzzi, A. Pagliarani, F. Trombetti, A.R. Borgatti & V. Ventrella. 2007. Changes in fatty 

acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comp. 

Biochem. Physiol. Part B Biochem. Mol. Biol., 147(4): 616–626. 

Popović, Z., I. Mladineo, D. Ezgeta-Balić, Ž. Trumbić, N. Vrgoč & M. Peharda. 2013. Reproductive cycle 

and gonad development of Venus verrucosa L. (Bivalvia: Veneridae) in Kaštela Bay, Adriatic Sea. 

Mar. Biol. Res., 9(January 2013): 229–239. 

Poppe, Y. & G. Goto. 1993. European seashells, Vol. 2 (Scaphopoda, Bivalvia, Cephalopoda), Wiesbaden: 

Verlag Christa Hemmen. 

Pörtner, H.O. & A.P. Farrell. 2008. ECOLOGY: Physiology and Climate Change. Science, 322: 690–692. 

Post, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. 



149 

 

Ecology, 83(3): 703–718. 

Poutiers, J. 1996. Fiches FAO d’identification des espèces pour les besoins de la pêche. FAO/CEE, 1. 

Méditerranée Mer Noire, Zo. pêche 37, Révision 1 Bivalves. 

Prins, T.C., A.C. Smaal & R.F. Dame. 1997. A review of the feedbacks between bivalve grazing and 

ecosystem processes. Aquat. Ecol., 31(4): 349–359. 

Puccinelli, E., M. Noyon & C.D. McQuaid. 2016. Does proximity to urban centres affect the dietary 

regime of marine benthic filter feeders? Estuar. Coast. Shelf Sci., 169: 147–157. 

Puljas, S., M. Peharda, I. Župan & F. Bukša. 2015. Maximum recorded life span of Arca noae Linnaeus, 

1758 in the marine protected area Telaščica, Adriatic Sea. Cah. Biol. Mar., 56: 163–168. 

Purroy, A., T. Šegvić-Bubić, A. Holmes, I. Bušelić, J. Thébault, A. Featherstone & M. Peharda. 2016. 

Combined Use of Morphological and Molecular Tools to Resolve Species Mis-Identifications in the 

Bivalvia The Case of Glycymeris glycymeris and G. pilosa. PLoS One, 11(9): e0162059. 

R Core Team. 2015. R: A language and environment for statistical computing. 

Radermacher, P., B.R. Schöne, E. Gischler, W. Oschmann, J. Thébault & J. Fiebig. 2009. Sclerochronology 

– a highly versatile tool for mariculture and reconstruction of life history traits of the queen conch, 

Strombus gigas (Gastropoda). Aquat. Living Resour., 22(3): 307–318. 

Ragueneau, O., L. Chauvaud, A. Leynaert, G. Thouzeau, Y.-M. Paulet, S. Bonnet, A. Lorrain, J. Grall, R. 

Corvaisier & M. Le Hir. 2002. Direct evidence of a biologically active coastal silicate pump: 

Ecological implications. Limnol. Oceanogr., 47(6): 1849–1854. 

Ramaswamy, V., B. Gaye, P.V. Shirodkar, P.S. Rao, A.R. Chivas, D. Wheeler & S. Thwin. 2008. Distribution 

and sources of organic carbon, nitrogen and their isotopic signatures in sediments from the 

Ayeyarwady (Irrawaddy) continental shelf, northern Andaman Sea. Mar. Chem., 111(3-4): 137–150. 

Ramón, M. 2003. Population dynamics and secondary production of the cockle Cerastoderma edule (L.) 

in a backbarrier tidal flat of the Wadden Sea. Sci. Mar., 67(4): 429–443. 

Ramón, M., J. Cano, J.B. Peña & M.J. Campos. 2005. Current status and perspectives of mollusc (bivalves 

and gastropods) culture in the Spanish Mediterranean. Boletín Inst. Español Oceanogr., 21: 361–

373. 

Ramón, M. & C.A. Richardson. 1990. Age determination and shell growth of Chamelea gallina (Bivalvia: 



150 

 

Veneridae) in the western Mediterranean. 

Ramsay, K., M. Kaiser & C. Richardson. 2000. Can shell scars on dog cockles (Glycymeris glycymeris L.) be 

used as an indicator of fishing disturbance? J. Sea Res., 43: 167–176. 

Ravera, O., G. Beone, P. Trincherini & N. Riccardi. 2007. Seasonal variations in metal content of two Unio 

pictorum mancus (Mollusca, Unionidae) populations from two lakes of different trophic state. J. 

Limnol., 66: 28–39. 

Rees, A.P., C.S. Law & E.M.S. Woodward. 2006. High rates of nitrogen fixation during an in-situ 

phosphate release experiment in the Eastern Mediterranean Sea. Geophys. Res. Lett., 33(10): 

L10607. 

Reynolds, D.J., P.G. Butler, S.M. Williams, J.D. Scourse, C.A. Richardson, A.D. Wanamaker, W.E.N. Austin, 

A.G. Cage & M.D.J. Sayer. 2013. A multiproxy reconstruction of Hebridean (NW Scotland) spring 

sea surface temperatures between AD 1805 and 2010. Palaeogeogr. Palaeoclimatol. Palaeoecol., 

386: 275–285. 

Reynolds, D.J., C.A. Richardson, J.D. Scourse, P.G. Butler, P. Hollyman, A. Román-González & I.R. Hall. 

2017. Reconstructing North Atlantic marine climate variability using an absolutely-dated 

sclerochronological network. Palaeogeogr. Palaeoclimatol. Palaeoecol., 465: 333–346. 

Ricardo, F., T. Pimentel, A.S.P. Moreira, F. Rey, M.A. Coimbra, M.R. Domingues, P. Domingues, M. Costa 

Leal & R. Calado. 2015. Potential use of fatty acid profiles of the adductor muscle of cockles 

(Cerastoderma edule) for traceability of collection site. Sci. Rep., 5(February): 11125. 

Richardson, C., D. Crisp & N. Runham. 1979. Tidally deposited growth bands in the shell of the common 

cockle Cerastoderma edule (L.). Malacologia, 18: 277–290. 

Richardson, C.A. 2001. Molluscs as archives of environmental change. Oceanogr. Mar. Biol. an Annu. 

Rev., 39: 103–164. 

Richardson, C.A., M. Peharda, H. Kennedy, P. Kennedy & V. Onofri. 2004. Age, growth rate and season of 

recruitment of Pinna nobilis (L) in the Croatian Adriatic determined from Mg:Ca and Sr:Ca shell 

profiles. J. Exp. Mar. Bio. Ecol., 299(1): 1–16. 

Riera, P. 2007. Trophic subsidies of Crassostrea gigas, Mytilus edulis and Crepidula fornicata in the Bay 

of Mont Saint Michel (France): A δ13C and δ15N investigation. Estuar. Coast. Shelf Sci., 72(1-2): 

33–41. 



151 

 

Riera, P. & P. Richard. 1996. Isotopic Determination of Food Sources of Crassostrea gigas Along a 

Trophic Gradient in the Estuarine Bay of Marennes-Oléron. Estuar. Coast. Shelf Sci., 42(3): 347–

360. 

Rivetti, I., S. Fraschetti, P. Lionello, E. Zambianchi & F. Boero. 2014. Global Warming and Mass 

Mortalities of Benthic Invertebrates in the Mediterranean Sea. PLoS One, 9(12): e115655. 

Romagnoli, F., J. Baena & L. Sarti. 2016. Neanderthal retouched shell tools and Quina economic and 

technical strategies: An integrated behaviour. Quat. Int., 407: 29–44. 

Romanek, C.S., E.L. Grossman & J.W. Morse. 1992. Carbon isotopic fractionation in synthetic aragonite 

and calcite: Effects of temperature and precipitation rate. Geochim. Cosmochim. Acta, 56(1): 419–

430. 

Román-González, A., J.D. Scourse, P.G. Butler, D.J. Reynolds, C.A. Richardson, L.S. Peck, T. Brey & I.R. 

Hall. 2017. Analysis of ontogenetic growth trends in two marine Antarctic bivalves Yoldia eightsi 

and Laternula elliptica: Implications for sclerochronology. Palaeogeogr. Palaeoclimatol. Palaeoecol. 

Root, T.L., J.T. Price, K.R. Hall, S.H. Schneider, C. Rosenzweigk & J.A. Pounds. 2003. Fingerprints of global 

warming on wild animals and plants. Nature, 421: 57–60. 

Royer, C., J. Thébault, L. Chauvaud & F. Olivier. 2013. Structural analysis and paleoenvironmental 

potential of dog cockle shells (Glycymeris glycymeris) in Brittany, northwest France. Palaeogeogr. 

Palaeoclimatol. Palaeoecol., 373: 123–132. 

Royer, J., C. Seguineau, K.-I. Park, S. Pouvreau, K.-S. Choi & K. Costil. 2008. Gametogenetic cycle and 

reproductive effort assessed by two methods in 3 age classes of Pacific oysters, Crassostrea gigas, 

reared in Normandy. Aquaculture, 277(3-4): 313–320. 

Rueda, J.. & A.. Smaal. 2004. Variation of the physiological energetics of the bivalve Spisula subtruncata 

(da Costa, 1778) within an annual cycle. J. Exp. Mar. Bio. Ecol., 301(2): 141–157. 

Sachs, J.P. & D.J. Repeta. 1999. Oligotrophy and Nitrogen Fixation During Eastern Mediterranean 

Sapropel Events. Science, 286(5449): 2485–2488. 

Sampaio, L., A.M. Rodrigues & V. Quintino. 2010. Carbon and nitrogen stable isotopes in coastal benthic 

populations under multiple organic enrichment sources. Mar. Pollut. Bull., 60(10): 1790–802. 

Sano, Y., S. Kobayashi, K. Shirai, N. Takahata, K. Matsumoto, T. Watanabe, K. Sowa & K. Iwai. 2012. Past 



152 

 

daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nat. Commun., 3: 

761. 

Šantić, D., S. Šestanović, M. Šolić, N. Krstulović, G. Kušpilić, M. Ordulj & Ž. Ninčević Gladan. 2013. 

Dynamics of the picoplankton community from coastal waters to the open sea in the Central 

Adriatic. Mediterr. Mar. Sci., 15(1): 179–188. 

Santos, S., J.F.M.F. Cardoso, V. Borges, R. Witbaard, P.C. Luttikhuizen & H.W. van der Veer. 2012. 

Isotopic fractionation between seawater and the shell of Scrobicularia plana (Bivalvia) and its 

application for age validation. Mar. Biol., 159(3): 601–611. 

Santos, S., J.F.M.F. Cardoso, C. Carvalho, P.C. Luttikhuizen & H.W. van der Veer. 2011. Seasonal 

variability in somatic and reproductive investment of the bivalve Scrobicularia plana (da Costa, 

1778) along a latitudinal gradient. Estuar. Coast. Shelf Sci., 92(1): 19–26. 

Sargent, J. & S. Falk-Petersen. 1988. The lipid chemistry of calanoid copepods. Hydrobiologia, 166/168: 

101–114. 

Sastry, A. & N.J. Blake. 1971. Regulation of gonad development in the Bay scallop, Aequipecten irradians 

Lamarck. Biol. Bull., 140: 274–283. 

Sastry, A.N. 1979. Pelecypoda (excluding Ostreidae). In A. C. Giese & J. S. Pearse, eds. Reproduction of 

marine invertebrates, Vol 5. New York, NY: Academic Press. 

Sastry, A.N. 1966. Temperature effects on reproduction of the bay scallop, Aequipecten irradians 

(Lamarck). Biol. Bull., 130: 118–134. 

Sato, S. 1997. Shell microgrowth patterns of bivalves reflecting seasonal change of phytoplankon 

abundance. Paleontol. Res., 1(4): 260–266. 

Sato, S. 1995. Spawning periodicity and shell microgrowth patterns of the venerid bivalve Phacosoma 

japonicum (Reeve, 1850). The Veliger, 38(1): 61–72. 

Savoye, N., A. Aminot, P. Treguer, M. Fontugne, N. Naulet & R. Kerouel. 2003. Dynamics of particulate 

organic matter δ15N and δ13C during spring phytoplankton blooms in a macrotidal ecosystem (Bay 

of Seine, France). Mar. Ecol. Prog. Ser., 255: 27–41. 

Savoye, N., V. David, F. Morisseau, H. Etcheber, G. Abril, I. Billy, K. Charlier, G. Oggian, H. Derriennic & B. 

Sautour. 2012. Origin and composition of particulate organic matter in a macrotidal turbid estuary: 



153 

 

The Gironde Estuary, France. Estuar. Coast. Shelf Sci., 108: 16–28. 

Schöne, B.R. 2003. A “clam-ring”master-chronology constructed from a short-lived bivalve mollusc from 

the northern Gulf of California, USA. The Holocene, 1: 39–49. 

Schöne, B.R. 2013. Arctica islandica (Bivalvia): A unique paleoenvironmental archive of the northern 

North Atlantic Ocean. Glob. Planet. Change, 111: 199–225. 

Schöne, B.R. 2008. The curse of physiology - Challenges and opportunities in the interpretation of 

geochemical data from mollusk shells. Geo-Marine Lett., 28: 269–285. 

Schöne, B.R., E. Dunca, J. Fiebig & M. Pfeiffer. 2005. Mutvei’s solution: An ideal agent for resolving 

microgrowth structures of biogenic carbonates. Palaeogeogr. Palaeoclimatol. Palaeoecol., 228(1-

2): 149–166. 

Schöne, B.R., J. Fiebig, M. Pfeiffer, R. Gleβ, J. Hickson, A.L. a. Johnson, W. Dreyer & W. Oschmann. 2005. 

Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeogr. 

Palaeoclimatol. Palaeoecol., 228(1-2): 130–148. 

Schöne, B.R., A.D. Freyre Castro, J. Fiebig, S.D. Houk, W. Oschmann & I. Kröncke. 2004. Sea surface water 

temperatures over the period 1884–1983 reconstructed from oxygen isotope ratios of a bivalve 

mollusk shell (Arctica islandica, southern North Sea). Palaeogeogr. Palaeoclimatol. Palaeoecol., 

212(3-4): 215–232. 

Schöne, B.R. & D.P. Gillikin. 2013. Unraveling environmental histories from skeletal diaries — Advances 

in sclerochronology. Palaeogeogr. Palaeoclimatol. Palaeoecol., 373: 1–5. 

Schöne, B.R., I. Kröncke & S.D. Houk. 2003. The cornucopia of chilly winters: ocean quahog (Arctica 

islandica L., Mollusca) master chronology reveals bottom water nutrient enrichment during colder 

winters (North. Senckenbergiana maritima, 32(1/2): 165–175. 

Schöne, B.R., M. Pfeiffer, T. Pohlmann & F. Siegismund. 2005. A seasonally resolved bottom-water 

temperature record for the period AD 1866-2002 based on shells of Arctica islandica (Mollusca, 

North Sea). Int. J. Climatol., 25(7): 947–962. 

Schöne, B.R., D.L. Rodland, A. Wehrmann, B. Heidel, W. Oschmann, Z. Zhang, J. Fiebig & L. Beck. 2007. 

Combined sclerochronologic and oxygen isotope analysis of gastropod shells (Gibbula cineraria, 

North Sea): life-history traits and utility as a high-resolution environmental archive for kelp forests. 

Mar. Biol., 150(6): 1237–1252. 



154 

 

Schöne, B.R. & D. Surge. 2012. Bivalve sclerochronology and geochemistry. In P. Seldon & J. Hardesty, 

eds. Treatise online 46: Part N. Volume 1. Lawrence: The University of Kansas, Paleontological 

Institute, pp. 1–24. 

Schöne, B.R., K. Tanabe, D. Dettman & S. Sato. 2003. Environmental controls on shell growth rates and 

δ18O of the shallow-marine bivalve mollusk Phacosoma japonicum in Japan. Mar. Biol., 142(3): 

473–485. 

Schubert, C. & S. Calvert. 2001. Nitrogen and carbon isotopic composition of marine and terrestrial 

organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter. 

Deep Sea Res. Part I Oceanogr. Res. Pap., 48: 789–810. 

Sebens, K.P. 1987. The Ecology of Indeterminate Growth in Animals. Annu. Rev. Ecol. Syst., 18(1): 371–

407. 

Seed, R. 1976. Ecology. In Marine Mussels: Their Ecology and Physiology. Cambridge: Cambridge 

University Press, pp. 13–65. 

Sejr, M., K. Jensen & S. Rysgaard. 2002. Annual growth bands in the bivalve Hiatella arctica validated by 

a mark-recapture study in NE Greenland. Polar Biol., 25: 794–796. 

Sejr, M.K., J.K. Petersen, K.T. Jensen & S. Rysgaard. 2004. Effects of food concentration on clearance rate 

and energy budget of the Arctic bivalve Hiatella arctica (L) at subzero temperature. J. Exp. Mar. 

Bio. Ecol., 311(1): 171–183. 

Semmens, B.X., E.J. Ward, A.C. Parnell, D.L. Phillips, S. Bearhop, R. Inger, A. Jackson & J.W. Moore. 2013. 

Statistical basis and outputs of stable isotope mixing models: Comment on Fry (2013). Mar. Ecol. 

Prog. Ser., 490: 285–289. 

Šestanović, S., M. Šolić & N. Krstulović. 2009. The influence of organic matter and phytoplankton 

pigments on the distribution of bacteria in sediments of Kaštela Bay (Adriatic Sea). Sci. Mar., 73(1): 

83–94. 

Shumway, S.E., R. Selvin & D.F. Schick. 1987. Food resources related to habitat in the scallop 

Placopecten magellanicus (Gmelin, 1791): A qualitative study. J. Shellfish Res., 6(2): 89–95. 

Sivan, D., M. Potasman, A. Almogi-Labin, D.E. Bar-Yosef Mayer, E. Spanier & E. Boaretto. 2006. The 

Glycymeris query along the coast and shallow shelf of Israel, southeast Mediterranean. 

Palaeogeogr. Palaeoclimatol. Palaeoecol., 233(1-2): 134–148. 



155 

 

Smith, W. & F. Fitzpatrick. 1996. The eicosanoids: cyclooxygenase, lipoxygenase, and epoxygenase 

pathways. In D. Vance & J. Vance, eds. Biochemistry of lipids, lipoproteins and membranes. 

Amsterdam: Elsevier Science, pp. 283–308. 

Sokolova, I.M., M. Frederick, R. Bagwe, G. Lannig & A.A. Sukhotin. 2012. Energy homeostasis as an 

integrative tool for assessing limits of environmental stress toleance in aquatic invertebrates. Mar. 

Environ. Res., 29: 1–15. 

Sola, J.C. 1997. Reproduction, population dynamics, growth and production of Scrobicularia plana da 

costa (pelecypoda) in the Bidasoa estuary, Spain. Netherlands J. Aquat. Ecol., 30(4): 283–296. 

Šolić, M., N. Krstulović, D. Šantić, S. Šestanović, M. Ordulj, N. Bojanić & G. Kušpilić. 2015. Structure of 

microbial communities in phosphorus-limited estuaries along the eastern Adriatic coast. J. Mar. 

Biol. Assoc. United Kingdom, 95(08): 1565–1578. 

Soudant, P., K. van Ryckeghem, Y. Marty, J. Samain & P. Sorgeloos. 1999. Comparison of the lipid class 

and fatty acid composition between a reproductive cycle in nature and a standard hatchery 

conditioning of the Pacific oyster Crassostrea gigas. Comp. Biochem. Physiol. Part B, 123: 209–222. 

Squires, R.L. 2010. Northeast Pacific Upper Cretaceous and Paleocene Glycymeridid Bivalves. J. 

Paleontol., 84(5): 895–917. 

Steingrimsson, S.A. 1989. A comparative ecological study of two Glycymeris glycymeris ( L .) populations 

off the Isle of Man. PhD thesis. University of Liverpool. 

Stemmer, K. & G. Nehrke. 2014. The distribution of polyenes in the shell of Arctica islandica from North 

Atlantic localities: a confocal Raman microscopy study. J. Molluscan Stud., 80(4): 365–370. 

Strickland, J. & T. Parsons. 1972. A practical handbook of sea-water analysis. J. Fish. Res. boar Canada, 

167: 1–311. 

Surić, M., R. Lončarić, N. Buzjak, S.T. Schultz, J. Šangulin, K. Maldini & D. Tomas. 2015. Influence of 

submarine groundwater discharge on seawater properties in Rovanjska-Modrič karst region 

(Croatia). Environ. Earth Sci., 74(7): 5625–5638. 

Taipale, S.J. & E. Sonninen. 2009. The influence of preservation method and time on the δ13C value of 

dissolved inorganic carbon in water samples. Rapid Commun. Mass Spectrom., 23(16): 2507–2510. 

Taylor, R.& J.C. 1983. The Reproductive Cycle of the Bay Scallop, Argopecten irradians irradians 



156 

 

(Lamarck), in a Small Coastal Embayment on Cape Cod, Massachusetts. Estuaries, 6(4): 431. 

Thomas, R. 1975. Functional morphology, ecology and evolutionary conservationism in the 

Glycymeridae (Bivalvia). Paleontology, 18: 217–254. 

Thompson, D., R. Phillips, F. Stewart & S. Waldron. 2000. Low δ13C signatures in pelagic seabirds: lipid 

ingestion as a potential source of 13C-depleted carbon in the Procellariiformes. Mar. Ecol. Prog. 

Ser., 208: 265–271. 

Thompson, I., D.S. Jones & D. Dreibelbis. 1980. Annual Internal Growth Banding and Life History of the 

Ocean Quahog Arctica islandica (Mollusca: Bivalvia). Mar. Biol., 57: 25–34. 

Tieszen, L., T. Boutton, K. Tesdahl & N. Slade. 1983. Fractionation and turnover of stable carbon isotopes 

in animal tissues: implication for δ13C analysis of diet. Oceanologia, 57: 32–37. 

Tirado, C., C. Salas & J.I. López. 2002. Reproduction of Callista chione in the littoral of Málaga (Southern 

Spain). J. Shellfish Res., 21: 643–648. 

Torres, T., J.E. Ortiz & I. Arribas. 2013. Variations in racemization/epimerization ratios and amino acid 

content of Glycymeris shells in raised marine deposits in the Mediterranean. Quat. Geochronol., 

16: 35–49. 

Turekian, K., J. Cochran, Y. Nozaki, I. Thompson & D. Jones. 1982. Determination of shell deposition rates 

of Arctica islandica from the New York Bight using natural 228Ra and 228Th and bomb-produced 

14C. Limnol. Oceanogr., 27: 737–741. 

Uddin, M.J., H.-S. Yang, K.-J. Park, C.-K. Kang, H.-S. Kang & K.-S. Choi. 2012. Annual reproductive cycle 

and reproductive efforts of the Manila clam Ruditapes philippinarum in Incheon Bay off the west 

coast of Korea using a histology-ELISA combined assay. Aquaculture, 364-365: 25–32. 

Underwood, A.., M.. Chapman & S.. Connell. 2000. Observations in ecology: you can’t make progress on 

processes without understanding the patterns. J. Exp. Mar. Bio. Ecol., 250(1-2): 97–115. 

Valli, G., E. Bidoli & C. Marussi. 1983. Osservazioni preliminari sulla riproduzione e sulla biometria di 

Callista chione (L.) (Mollusca, Bivalvia) del Golfo di Trieste. Nov. Thalass., 6: 97–103. 

Valli, G., N. Marsich & M. Marsich. 1994. Riproduzione, biometria e contenuto di metalli in Callista 

chione (L.) (Mollusca, Bivalvia) del Golfo di Trieste nel corso di un ciclo annuale. Boll. della Soc. 

Adriat. di Sci. LXXV, Tomo II: 441–464. 



157 

 

Velasco, L.A. 2013. Esfuerzo reproductivo en moluscos: una revisión. Rev. Intropica, (18): 87–97. 

Ventrella, V., M. Pirini, A. Pagliarani, F. Trombetti, M.P. Manuzzi & A.R. Borgatti. 2008. Effect of temporal 

and geographical factors on fatty acid composition of M. galloprovincialis from the Adriatic sea. 

Comp. Biochem. Physiol. Part B, 149(2): 241–250. 

Verdelhos, T., P. Cardoso, M. Dolbeth & M. Pardal. 2011. Latitudinal gradients in Scrobicularia plana 

reproduction patterns, population dynamics, growth, and secondary production. Mar. Ecol. Prog. 

Ser., 442: 271–283. 

Verdelhos, T., J.C. Marques & P. Anastácio. 2015. Behavioral and mortality responses of the bivalves 

Scrobicularia plana and Cerastoderma edule to temperature, as indicator of climate change’s 

potential impacts. Ecol. Indic., 58: 95–103. 

Vihtakari, M., P.E. Renaud, L.J. Clarke, M.J. Whitehouse, H. Hop, M.L. Carroll & W.G. Ambrose. 2016. 

Decoding the oxygen isotope signal for seasonal growth patterns in Arctic bivalves. Palaeogeogr. 

Palaeoclimatol. Palaeoecol., 446: 263–283. 

Viladrich, N., L. Bramanti, G. Tsounis, B. Chocarro, A. Martínez-Quitana, S. Ambroso, T. Madurell & S. 

Rossi. 2016. Variation in lipid and free fatty acid content during spawning in two temperate 

octocorals with different reproductive strategies: surface versus internal brooder. Coral Reefs, 

35(3): 1033–1045. 

Vilibić, I., H. Mihanović, G. Kušpilić, A. Ivčević & V. Milun. 2015. Mapping of oceanographic properties 

along a middle Adriatic transect using Self-Organising Maps. Estuar. Coast. Shelf Sci., 163: 84–92. 

Villalejo-Fuerte, M., F. Garcia-Dominguez & R.I. Ochoa-Baez. 1995. Reproductive cycle of Glycymeris 

gigantea (Reeve, 1843) (Bivalvia: Glycymerididae) in Bahia Concepcion, Baja California Sur, Mexico. 

Veliger, 38(2): 126–132. 

Vizzini, S. & A. Mazzola. 2006. The effects of anthropogenic organic matter inputs on stable carbon and 

nitrogen isotopes in organisms from different trophic levels in a southern Mediterranean coastal 

area. Sci. Total Environ., 368(2-3): 723–731. 

Volkman, J., A. Revill, P. Bonham & L. Clementson. 2007. Sources of organic matter in sediments from 

the Ord River in tropical northern Australia. Org. Geochem., 38: 1039–1060. 

Wada, E., K. Ohki, S. Yoshikawa, P.. Parker, C. Van Baalen, G.I. Matsumoto, M. Noguchi Aita & T. Saino. 

2012. Ecological aspects of carbon and nitrogen isotope ratios of cyanobacteria. Plankt. Benthos 



158 

 

Res., 7(3): 135–145. 

Walliser, E.O., B.R. Schöne, T. Tütken, J. Zirkel, K.I. Grimm & J. Pross. 2015. The bivalve Glycymeris 

planicostalis as a high-resolution paleoclimate archive for the Rupelian (Early Oligocene) of central 

Europe. Clim. Past, 11(4): 653–668. 

Walthert, L., U. Graf, A. Kammer, J. Luster, D. Pezzotta, S. Zimmermann & F. Hagedorn. 2010. 

Determination of organic and inorganic carbon, δ13C, and nitrogen in soils containing carbonates 

after acid fumigation with HCl. J. Plant Nutr. Soil Sci., 173(2): 207–216. 

Wanamaker, A., A. Baker, P. Butler, C. Richardson, J. Scourse, I. Ridgway & D. Reynolds. 2009. A novel 

method for imaging internal growth patterns in marine mollusks: A fluorescence case study on the 

aragonitic shell of the marine bivalve Arctica islandica (Linnaeus). Limnol. Oceanogr. Methods, 7: 

673–681. 

Wanamaker, A.D., P.G. Butler, J.D. Scourse, J. Heinemeier, J. Eiríksson, K.L. Knudsen & C.A. Richardson. 

2012. Surface changes in the North Atlantic meridional overturning circulation during the last 

millennium. Nat. Commun., 3: 899. 

Ward, J. & S.E. Shumway. 2004. Separating the grain from the chaff: particle selection in suspension- 

and deposit-feeding bivalves. J. Exp. Mar. Bio. Ecol., 300(1-2): 83–130. 

Watanabe, T. & T. Oba. 1999. Daily reconstruction of water temperature from oxygen isotopic ratios of a 

modern Tridacna shell using a freezing microtome sampling technique. J. Geophys. Res. Ocean., 

104(C9): 20667–20674. 

Weidman, C. & G. Jones. 1994. The long‐lived mollusc Arctica islandica: A new paleoceanographic tool 

for the reconstruction of bottom temperatures for the continental shelves of the northern North. J. 

Geophys. Res., 99: 305–314. 

Witbaard, R. 1996. A long-term growth record derived from Arctica islandica (Mollusca, Bivalvia) from 

the Fladen Ground (northern North Sea). ICES J. Mar. Sci. Mar. …, 53: 981–987. 

Witbaard, R., G.C.A. Duineveld & M. Bergman. 2001. The effect of tidal resuspension on benthic food 

quality in the southern North Sea. Senckenbergiana maritima, 31(2): 225–234. 

Yan, H., J. Chen & J. Xiao. 2014. A review on bivalve shell, a tool for reconstruction of paleo-climate and 

paleo-environment. Chinese J. Geochemistry, 33(3): 310–315. 



159 

 

Yan, L., B.R. Schöne, S. Li & Y. Yan. 2014. Shells of Paphia undulata (Bivalvia) from the South China Sea as 

potential proxy archives of the East Asian summer monsoon: a sclerochronological calibration 

study. J. Oceanogr., 70(1): 35–44. 

Yokoyama, H., A. Tamaki & K. Harada. 2005. Variability of diet-tissue isotopic fractionation in estuarine 

macrobenthos. Mar. Ecol. Prog. Ser., 296: 115–128. 

Yurkowski, D.J., S.H. Ferguson, C.A.D. Semeniuk, T.M. Brown, D.C.G. Muir & A.T. Fisk. 2016. Spatial and 

temporal variation of an ice-adapted predator’s feeding ecology in a changing Arctic marine 

ecosystem. Oecologia, 180(3): 631–644. 

Vander Zanden, M.J. & J.B. Rasmussen. 2001. Variation in δ15N and δ13C trophic fractionation: 

Implications for aquatic food web studies. Limnol. Oceanogr., 46(8): 2061–2066. 

Zhao, L., B.R. Schöne & R. Mertz-Kraus. 2017. Controls on strontium and barium incorporation into 

freshwater bivalve shells (Corbicula fluminea). Palaeogeogr. Palaeoclimatol. Palaeoecol., 465: 386–

394. 

Zhukova, N. & V. Kharlamenko. 1999. Sources of essential fatty acids in the marine microbial loop. 

Aquat. Microb. Ecol., 17: 153–157. 

Zucchetta, M., G. Cipolato, F. Pranovi, P. Antonetti, P. Torricelli, P. Franzoi & S. Malavasi. 2012. The 

relationships between temperature changes and reproductive investment in a Mediterranean 

goby: Insights for the assessment of climate change effects. Estuar. Coast. Shelf Sci., 101: 15–23. 

Župan, I., M. Peharda, T. Dolenec, M. Dolenec, P.Ž. Rožič, S. Lojen, D. Ezgeta-Balić & J. Arapov. 2014. 

Aquaculture Assessment of Noah’s Ark (Arca noae Linnaeus, 1758) in The Central Adriatic Sea 

(Croatia). J. Shellfish Res., 33(2): 433–441. 

Žvab, P., T. Dolenec, S. Lojen, G. Kniewald, J. Vodopija, Z. Lambaša & M. Dolenec. 2010. Use of stable 

nitrogen (δ15N) isotopes in food web of the Adriatic Sea, Croatia. Mater. Geoenvironment, 57(1): 

41–52. 

Žvab Rožič, P., T. Dolenec, S. Lojen, G. Kniewald & M. Dolenec. 2015. Use of stable isotope composition 

variability of particulate organic matter to assess the anthropogenic organic matter in coastal 

environment (Istra Peninsula, Northern Adriatic). Environ. Earth Sci., 73(7): 3109–3118. 

 



160 

 

Zwarts, L. 1991. Seasonal variation in body weight of the bivalves Macoma balthica, Scrobicularia plana, 

Mya arenaria and Cerastoderma edule in the Dutch Wadden Sea. Netherlands J. Sea Res., 28: 231–

245. 

 



 

1
61

 

 

Table S1. Descriptive table of environmental and biochemical parameters in suspended particulate matter (SPM) and sediment (Sed) (mean ± SD). Abbreviations: Temperature 

(T; °C), salinity (ppm), Suspended particulate matter concentrations (SPM; mg/L), Chlorophyll a (Chl a; µg/L and µg/g), Chl a fraction within SPM (Chl a/SPM; %), biogenic silica 

(BSi; mg/L and %), BSi fraction within SPM (BSi/SPM; %), Particulate organic carbon and Chl a ratio (POC/Chl a), Inorganic carbon (IC; %) and Total carbon (TC; %). 

 

Location Year Season Month 

SPM Sed 

T  Salinity SPM  Chl a  Chl a/SPM  BSi  BSi/SPM POC/Chl a Chl a  BSi  IC TC  

(°C) (ppm) (mg/L) (µg/L) (%) (mg/L)  (%)   (µg/g) (%)  (%) (%) 

PAG 2014 Summer June 20.64 36.50 4.0±1.4 0.2±0.0 0.006 0.34±0.1 8.57 749.14 0.4±0.1 0.13 11.59 12.02 

  

 July 23.64 37.21 1.5±0.0 0.2±0.0 0.007 0.10±0.0 6.79 961.73 0.8±0.1 0.18 11.02 11.40 

  

 August 24.15 35.00 1.5±0.1 0.3±0.1 0.019 0.15±0.1 10.09 660.83 1.2±0.1 0.09 12.07 12.23 

  

Fall September 20.66 36.60 0.9±0.1 0.5±0.0 0.057 0.11±0.0 11.93 326.14 0.5±0.0 0.10 11.73 11.85 

  

 October 19.06 34.68 0.6±0.2 0.5±0.0 0.083 0.09±0.0 14.05 385.18 1.3±0.1 0.16 11.75 11.88 

  

 November 15.84 36.87 0.8±0.1 0.3±0.0 0.035 0.03±0.0 3.64 1080.00 1.8±0.2 0.06 11.97 12.13 

  

Winter December 13.27 36.89 0.6±0.1 0.3±0.1 0.055 0.11±0.0 18.33 519.57 1.8±0.2 0.13 12.14 12.27 

 
2015 

 
January 10.42 36.21 0.7±0.1 0.6±0.1 0.086 0.06±0.0 8.65 280.02 NA NA NA NA 

  
 

February 8.87 36.98 0.6±0.1 0.2±0.0 0.041 0.03±0.0 5.76 626.04 1.4±0.1 0.11 12.04 12.17 

  

Spring March 9.81 36.22 1.1±0.4 0.6±0.0 0.096 0.05±0.0 4.68 235.29 0.4±0.3 0.12 11.01 11.67 

  

 April 11.98 37.50 0.4±0.1 0.3±0.0 0.061 0.06±0.0 12.99 503.96 5.0±1.4 0.10 11.83 12.35 

  

 May 16.31 37.20 0.6±0.4 0.3±0.0 0.057 0.03±0.0 5.64 417.48 0.6±0.0 0.11 11.48 12.21 

  

Summer June 21.30 36.56 1.2±0.5 0.3±0.1 0.046 0.06±0.0 4.86 531.26 0.6±0.1 0.15 11.28 12.07 

  

 July 24.59 37.97 0.9±0.1 0.4±0.1 0.037 0.04±0.0 4.59 663.64 0.6±0.1 0.11 10.65 11.42 

  

 August 25.05 38.28 0.7±0.1 0.4±0.1 0.043 0.05±0.0 7.50 762.48 0.4±0.0 0.18 11.61 12.02 

  

Fall September 21.35 37.64 0.5±0.0 0.4±0.0 0.096 0.08±0.0 16.50 513.06 3.1±0.1 0.20 11.99 12.27 

 
    October 17.64 37.07 0.7±0.0 0.5±0.1 0.072 0.06±0.0 7.64 309.69 0.6±0.1 0.17 11.16 11.40 

CETINA 2014 Summer June 20.37 NA 0.8±0.1 0.2±0.0 0.027 NA NA 820.72 1.6±0.2 NA 9.48 9.85 

  
July 23.92 36.12 1.1±0.2 0.3±0.0 0.024 0.11±0.0 9.69 865.76 2.3±0.2 0.14 10.24 10.64 

  
August 24.58 36.80 1.0±0.1 0.3±0.0 0.029 0.17±0.1 16.71 467.20 4.1±0.1 0.16 10.16 10.59 
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Table S1. (cont.) 

Location Year Season Month 

SPM Sed 

T  Salinity SPM  Chl a  Chl a/SPM  BSi  BSi/SPM POC/Chl a Chl a  BSi  IC TC  

(°C) (ppm) (mg/L) (µg/L) (%) (mg/L)  (%)   (µg/g) (%)  (%) (%) 

CETINA 
 

Fall September 23.12 35.75 1.0±0.2 0.2±0.0 0.024 0.11±0.0 11.37 591.32 2.9±0.1 0.12 10.99 11.40 

  
October 21.29 35.70 0.9±0.1 0.6±0.2 0.071 0.11±0.0 12.34 565.34 2.4±0.1 0.17 10.86 11.28 

  
November 18.23 38.14 0.6±0.2 0.3±0.0 0.054 0.02±0.0 3.75 370.46 11.8±0.4 0.29 9.38 9.84 

  Winter 

December 16.41 37.39 1.0±0.2 0.4±0.1 0.038 0.12±0.0 11.38 527.97 5.0±0.7 0.23 11.08 11.56 

 
2015 January 13.90 37.20 0.7±0.2 0.4±0.1 0.051 0.05±0.0 6.75 544.48 6.5±0.1 0.16 10.43 10.89 

  
February 12.82 36.01 2.0±1.5 0.6±0.0 0.031 0.08±0.0 4.06 317.19 4.0±0.3 0.25 10.87 11.27 

  

Spring March 12.67 32.20 0.9±0.4 0.5±0.0 0.050 0.07±0.0 7.66 296.08 6.8±0.3 0.22 7.59 7.95 

  
April 13.76 32.54 0.8±0.1 0.5±0.0 0.073 0.03±0.0 4.02 319.30 2.7±0.4 0.19 10.86 11.26 

  
May 17.27 36.60 0.9±0.5 0.6±0.1 0.067 0.05±0.0 5.51 300.24 2.3±0.3 0.13 11.49 11.91 

  

Summer June 20.97 38.48 1.4±0.2 0.4±0.0 0.029 0.08±0.0 5.98 540.86 1.4±0.0 0.16 10.85 11.28 

  
July 23.44 36.30 0.6±0.1 0.2±0.1 0.040 0.06±0.0 9.89 719.22 1.1±0.0 0.15 11.07 11.48 

  
August 26.37 38.52 0.7±0.1 0.2±0.0 0.033 0.04±0.0 6.00 711.58 3.3±0.4 0.20 10.83 11.25 

  

Fall September 23.46 37.52 0.5±0.0 0.3±0.0 0.062 0.08±0.0 14.68 532.45 3.1±0.3 0.21 11.04 11.46 

    October 20.78 37.30 0.8±0.1 0.3±0.0 0.036 0.05±0.0 6.79 512.55 2.3±0.3 0.19 11.60 12.00 
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Table S2. Two-way ANOVA results of environmental parameters in suspended particulate matter (SPM) and 

sediment (Sed). Chlorophyll a (Chl a) in SPM (µg/L) and Sed (µg/g), Suspended particulate matter (SPM) in mg/L, 

Biogenic silica (BSi) in mg/L and Lipids in SPM (mg/g) and Sed (mg/g). Probabilities are expressed as: ** p < 0.001 

and * p < 0.05. 

 

Two-way ANOVA         

  df SS MS F p 

Chl a (µg/L) 
     site 1 0.00 0.00 0.00 0.997 

month 1 0.05 0.05 2.43 0.122 

site*month 1 0.00 0.00 0.15 0.698 

Residuals 101 2.04 0.02 
  Chl a (µg/g) 

     site 1 156.25 156.25 38.06 < 0.001** 

month 1 1.92 1.92 0.47 0.496 

site*month 1 11.93 11.93 2.91 0.092 

Residuals 97 398.21 4.11 
  SPM (mg/L) 

     site 1 0.88 0.88 1.55 0.215 

month 1 9.77 9.77 17.31 < 0.001** 

site*month 1 6.05 6.05 10.71 < 0.05* 

Residuals 99 55.88 0.56 
  BiSi (mg/L) 

     site 1 0.002 0.002 1.29 0.259 

month 1 0.04 0.04 34.44 < 0.001** 

site*month 1 <0.001 <0.001 0.04 0.842 

Residuals 90 0.108 0.001 
  Lipids (mg/L) 

     site 1 0.20 0.20 14.31 < 0.001** 

month 1 0.19 0.19 13.57 < 0.001** 

site*month 1 0.01 0.01 0.85 0.360 

Residuals 68 0.97 0.01 
  Lipids (mg/g) 

     site 1 1.68 1.68 34.32 < 0.001** 

month 1 0.00 0.00 0.06 0.810 

site*month 1 2.64 2.64 53.99 < 0.001** 

Residuals 65 3.18 0.05     
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Table S3. Isotopic (δ13C, δ15N) (‰; mean ± SD) and elemental (C, N) (%; mean ± SD) composition and C:N molar ratio of food sources (suspended particulate matter [SPM] and sediment 

[Sed]) and consumers (Glycymeris bimaculata and Callista chione). 

Sample Year Season Month 
PAG CETINA 

δ13C(‰) δ15N(‰) %C %N C:N δ13C(‰) δ15N(‰) %C %N C:N 

A. Food sources 
             SPM 2014 Summer June -24.7±0.5 2.3±0.2 3.0±1.0 0.3±0.1 10.59 -24.2±0.1 5.3±0.5 5.0±0.4 0.8±0.1 7.41 

  
July -24.4±0.3 5.3±0.5 5.8±0.7 0.8±0.1 8.32 -24.8±0.2 5.5±0.4 6.2±1.7 0.9±0.3 7.82 

  
August -24.0±0.1 2.8±1.6 4.2±0.9 0.6±0.1 8.36 -24.4±0.1 2.5±1.9 3.6±0.3 0.5±0.0 7.84 

  

Fall September -23.4±0.1 4.7±0.2 4.2±0.8 0.7±0.1 7.27 -23.5±0.1 3.7±1.0 4.2±0.1 0.7±0.0 7.56 

  
October -23.7±0.4 4.2±0.4 6.7±1.7 0.9±0.2 8.48 -24.4±0.3 4.4±1.3 8.9±3.5 1.0±0.3 10.11 

  
November -23.6±0.2 6.1±0.3 6.9±3.8 1.0±0.6 8.04 -24.4±0.5 4.7±0.8 3.2±0.5 0.4±0.1 8.87 

  Winter 

December -24.4±0.2 3.8±1.4 5.3±1.2 0.7±0.2 8.59 -26.2±1.3 4.5±1.7 5.1±3.0 0.5±0.3 11.15 

 
2015 January -25.4±0.2 4.3±0.1 4.4±0.3 0.6±0.0 8.64 -25.3±0.1 4.0±0.4 3.9±0.8 0.5±0.1 8.98 

  
February -25.5±0.1 4.5±0.3 4.3±0.3 0.6±0.0 8.76 -25.5±0.2 4.8±0.5 5.0±0.7 0.5±0.0 11.20 

  

Spring March -24.6±0.0 2.3±0.8 3.6±0.6 0.5±0.1 8.46 -25.7±0.4 3.4±1.4 4.3±0.7 0.6±0.1 8.62 

  
April -25.6±0.6 5.5±1.9 5.8±0.9 0.8±0.0 8.65 -24.7±1.0 5.5±2.1 5.0±1.4 0.6±0.1 9.74 

  
May -25.3±0.1 2.6±0.3 5.4±0.7 0.6±0.1 9.77 -25.4±0.6 3.0±0.5 4.9±1.9 0.7±0.2 8.61 

  

Summer June -24.6±0.2 1.6±1.2 5.2±0.8 0.7±0.2 8.13 -25.2±0.1 3.6±0.6 4.8±1.2 0.5±0.1 10.67 

  
July -23.6±0.2 3.3±0.2 6.2±0.5 0.9±0.1 8.47 -25.6±0.1 3.5±0.3 3.9±1.8 0.5±0.2 9.28 

  
August -23.8±0.3 3.9±0.4 6.7±0.7 0.8±0.1 9.51 -22.8±0.1 4.9±0.3 5.8±1.2 1.0±0.3 6.93 

  

Fall September -23.6±0.0 4.6±0.5 7.0±0.7 1.0±0.1 8.28 -23.8±0.1 5.6±0.5 5.9±1.0 0.8±0.1 8.29 

 
  October -24.1±0.1 4.2±0.8 4.0±0.1 0.6±0.0 8.38 -23.8±0.1 4.7±1.0 3.8±0.6 0.4±0.1 9.87 

Sed 2014 Summer June n.a. -2.1±0.4 0.4±0.3 0.0±0.0 14.59 n.a. 1.6±0.3 0.4±0.0 0.0±0.0 7.68 

   
July -22.0±0.2 0.0±0.8 0.4±0.0 0.0±0.0 9.89 -26.5±0.0 1.0±0.3 0.4±0.0 0.0±0.0 8.05 

   
August n.a. -2.0±0.5 0.2±0.1 0.0±0.0 11.78 n.a. 2.3±0.5 0.4±0.0 0.0±0.0 7.67 

  
Fall September n.a. -2.3±0.0 0.1±0.0 0.0±0.0 9.09 n.a. 1.9±0.1 0.4±0.0 0.0±0.0 6.95 

   
October -22.5±0.1 -0.7±1.0 0.1±0.0 0.0±0.0 6.87 -26.5±0.3 2.3±0.0 0.4±0.0 0.0±0.0 6.73 
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Table S3. (cont.) 

Sample Year Season Month 
PAG CETINA 

δ13C(‰) δ15N(‰) %C %N C:N δ13C(‰) δ15N(‰) %C %N C:N 

Sed 
  

November n.a. -0.4±0.1 0.2±0.0 0.0±0.0 9.11 n.a. 3.2±0.1 0.5±0.0 0.0±0.0 8.68 

  
Winter December n.a. 3.9±0.2 0.1±0.0 0.0±0.0 5.17 n.a. 2.7±0.1 0.5±0.0 0.0±0.0 8.42 

 
2015 

 
January n.a. n.a. n.a. n.a. n.a.  n.a. 2.0±0.2 0.5±0.1 0.0±0.0 9.73 

   
February -22.3±0.6 -0.1±0.1 0.1±0.0 0.0±0.0 6.52 -26.6±0.1 1.9±0.1 0.4±0.0 0.0±0.0 6.80 

  
Spring March n.a. -1.1±1.4 0.7±0.0 0.0±0.0 31.12 n.a. 2.2±0.3 0.4±0.0 0.0±0.0 6.69 

   
April n.a. 1.1±0.3 0.5±0.1 0.0±0.0 18.33 n.a. 1.1±0.1 0.4±0.0 0.0±0.0 8.22 

   
May -22.7±0.1 1.5±0.1 0.7±0.1 0.0±0.0 13.76 -26.7±0.2 3.1±0.2 0.4±0.0 0.0±0.0 8.89 

  
Summer June n.a. 0.1±2.1 0.8±0.1 0.0±0.0 21.19 n.a. 3.3±0.2 0.4±0.0 0.0±0.0 8.46 

   
July n.a. -0.6±0.7 0.8±0.1 0.0±0.0 19.79 n.a. 2.7±0.4 0.4±0.0 0.0±0.0 7.25 

   
August n.a. 1.7±1.0 0.4±0.0 0.0±0.0 11.01 n.a. 2.7±0.2 0.4±0.0 0.0±0.0 6.19 

  
Fall September n.a. 0.7±0.1 0.3±0.0 0.0±0.0 10.53 n.a. 3.0±0.4 0.4±0.0 0.0±0.0 7.25 

   
October n.a. 0.8±0.4 0.2±0.1 0.0±0.0 11.32 n.a. 2.5±0.3 0.4±0.0 0.0±0.0 6.96 

              B. Consumers 
             Glycymeris  2014 Summer June -22.9±0.3 1.3±0.2 40.2±1.8 7.2±0.1 6.55 -23.5±0.1 2.5±0.1 43.5±2.1 7.0±0.2 7.21 

bimaculata 
  

July -22.8±0.3 1.3±0.0 37.0±3.7 6.8±0.3 6.36 -22.8±0.3 3.0±0.1 36.2±5.1 6.5±0.4 6.49 

   
August -22.9±0.1 1.6±0.1 40.6±3.5 6.6±0.4 7.19 -23.1±0.1 3.2±0.1 41.9±0.5 6.6±0.3 7.41 

  
Fall September -22.1±0.1 1.7±0.0 39.4±1.8 7.2±0.4 6.43 -22.7±0.1 3.1±0.2 41.0±0.6 7.4±0.1 6.48 

   
October -22.6±0.2 1.4±0.0 44.9±0.1 8.2±0.2 6.38 -23.0±0.6 3.0±0.2 44.1±1.7 7.9±0.7 6.59 

   
November -23.0±0.4 1.8±0.1 45.3±4.4 7.5±0.2 6.99 -24.0±0.8 2.6±0.1 51.3±10.1 6.8±0.2 8.74 

  
Winter December -22.8±0.2 1.5±0.1 46.2±0.8 8.0±0.3 6.72 -22.4±0.4 2.9±0.1 42.6±2.6 8.2±0.4 6.09 

 
2015 

 
January -22.7±0.2 1.0±0.0 43.8±1.8 8.4±0.2 6.12 -23.5±0.1 2.3±0.1 47.5±1.3 7.7±0.2 6.86 

   
February -23.5±0.2 0.4±0.0 47.8±0.5 8.2±0.1 6.77 -22.8±0.7 2.2±0.3 45.1±2.6 7.7±0.6 7.11 

  
Spring March -23.2±0.2 0.6±0.1 47.4±0.7 7.9±0.3 6.99 -23.7±0.1 2.0±0.1 46.7±1.4 7.9±0.2 6.94 
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Table S3. (cont.) 

Sample Year Season Month 
PAG CETINA 

δ13C(‰) δ15N(‰) %C %N C:N δ13C(‰) δ15N(‰) %C %N C:N 

Glycymeris 
  

April -23.8±0.2 0.7±0.2 45.9±1.0 7.6±0.2 7.06 -23.7±0.2 2.0±0.2 47.5±1.1 7.5±0.3 7.41 

bimaculata 
  

May -24.5±0.3 0.2±0.1 46.7±0.9 7.5±0.3 7.26 -23.9±0.1 1.8±0.0 45.2±1.8 7.4±0.1 7.14 

  
Summer June -24.5±0.3 0.6±0.3 46.5±1.4 7.2±0.3 7.58 -24.5±0.2 1.9±0.1 46.5±0.7 6.7±0.2 8.11 

   
July -24.0±0.3 0.9±0.1 46.0±0.8 7.6±0.2 7.04 -24.2±0.1 2.2±0.1 46.1±0.6 7.1±0.1 7.53 

   
August -23.9±0.2 1.1±0.0 48.8±1.2 7.2±0.2 7.91 -25.2±0.7 2.8±0.4 52.0±3.7 6.7±0.9 9.17 

  
Fall September -23.4±0.3 1.2±0.0 47.9±1.1 7.3±0.4 7.72 -23.3±0.3 2.8±0.1 46.5±0.8 7.7±0.4 7.07 

 
    October -23.0±0.2 1.2±0.0 47.4±0.7 7.7±0.2 7.15 -23.4±0.3 2.8±0.0 48.0±1.3 7.5±0.2 7.50 

Callista  2014 Summer June -23.3±0.6 1.4±0.3 39.4±6.4 6.6±0.2 6.99 -25.0±0.2 2.5±0.0 47.0±3.8 5.6±0.2 9.81 

chione 
  

July -24.1±0.7 1.8±0.0 44.9±8.6 6.0±0.4 8.65 -24.3±0.1 3.0±0.1 44.0±0.9 5.2±0.1 9.80 

   
August -23.3±0.1 1.8±0.1 45.7±1.5 6.7±0.1 11.41 -24.6±0.3 3.2±0.3 52.3±2.8 5.4±0.3 11.41 

  
Fall September -23.0±0.2 1.4±0.2 43.0±2.4 6.8±0.0 7.39 -24.1±0.4 3.0±0.2 49.8±2.5 6.2±0.4 9.43 

   
October -23.2±0.4 1.2±0.3 45.2±0.9 7.7±0.4 6.89 -24.1±0.1 2.5±0.2 49.2±0.4 6.5±0.2 8.78 

   
November -24.0±0.1 1.4±0.2 51.3±3.1 7.0±0.4 8.53 -24.3±0.4 2.4±0.2 50.7±3.7 6.3±0.4 9.38 

  
Winter December -23.4±0.1 1.3±0.2 46.6±0.9 7.9±0.2 6.92 -23.7±0.6 2.7±0.0 48.3±2.2 7.5±0.4 7.55 

 
2015 

 
January -23.7±0.2 0.8±0.3 45.4±0.7 7.9±0.2 6.69 -23.1±0.5 2.5±0.3 44.7±2.4 7.2±0.7 7.96 

   
February -24.5±0.1 0.4±0.2 47.8±0.7 7.3±0.8 7.73 -23.9±0.6 2.0±0.2 48.5±2.9 7.8±0.7 7.38 

  
Spring March -25.4±0.3 0.3±0.0 49.6±1.5 6.8±0.1 8.56 -24.5±0.6 1.9±0.3 50.5±2.4 7.2±1.0 8.33 

   
April -25.5±0.3 0.8±0.1 57.1±13.2 8.2±2.1 8.14 -24.2±0.2 2.0±0.3 48.4±1.7 7.9±0.2 7.14 

   
May -25.6±0.3 0.5±0.2 46.9±2.0 6.8±0.4 8.03 -25.3±0.3 1.6±0.1 46.0±1.8 6.8±0.4 7.94 

  
Summer June -25.5±0.3 0.8±0.4 47.6±2.3 6.9±0.4 8.06 -25.7±0.1 1.9±0.2 48.7±0.9 5.9±0.3 9.71 

   
July -24.6±0.2 1.0±0.2 47.0±1.0 7.2±0.4 7.61 -25.6±0.3 2.4±0.2 49.3±2.3 6.3±0.6 9.20 

   
August -24.7±0.5 1.1±0.3 51.7±2.2 6.6±0.7 9.16 -24.2±0.2 2.7±0.1 49.1±0.8 7.5±0.2 7.68 

  
Fall September -23.0±0.7 1.1±0.1 46.3±2.4 8.0±0.6 6.79 -25.4±0.8 2.7±0.1 54.1±3.3 6.4±1.0 10.10 

      October -23.0±0.3 1.0±0.1 47.6±0.8 8.0±0.3 6.94 -25.4±0.6 2.8±0.1 54.4±2.6 6.0±0.7 10.75 



 

1
67

 

 

Table S4. Fatty acid contribution (mean % TFA ± SD) of food sources: (A) suspended particulate matter (SPM) in Pag, (B) SPM in Cetina and (C) sediment (Sed) in Pag, (D) Sed in 

Cetina. FA with annual mean proportions > 1% are shown. SFA: saturated FA; MUFA: monosaturated FA; PUFA: polyunsaturated FA; UND: unsaturation degree (Pirini et al. 

2007) ; DETRITAL: detrital FA [15:0+15iso+15anteiso+17:0+17iso+17anteiso+18:1(n-7)] (Mayzaud et al. 1989, Najdek et al. 2002). 

A. SPM - PAG 
FAME May June July August September October November December January February March April 

C14:0 9.5±0.6 8.6±0.7 7.4±0.4 8.1±0.4 9.1±0.4 8.6±0.3 5.4±0.8 8.4±0.6 9.1±0.6 5.6±0.4 5.2±0.2 5.6±0.4 
C15:0i 0.1±0.1 1.7±0.2 0±0 0±0 2.9±0.2 1±0.1 1.2±0.1 0±0 3.5±0.5 0.9±0 0.9±0 1.6±0.2 
C15:0ai 0.2±0.1 1.8±0.1 0±0 0.6±0.2 1.5±0.1 1.5±0.1 1.1±0.2 0±0 0.5±0.1 1.2±0.1 1.7±0.3 0.7±0.2 
C15:1 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 1.4±0.2 0±0 0±0 0±0 
C15:0 0±0 1.4±0.1 2.5±0.1 2.9±0.2 1.9±0.2 2.9±0.2 1.2±0.3 1.9±0.2 3.6±0.4 1.5±0.1 1.6±0.1 2.1±0.2 
C16:0i 0±0 1.2±0.1 0±0 0±0 0±0 0.9±0.1 0±0 0±0 0±0 0±0 0±0 0±0 
C16:1 9.5±0.6 7±0.5 12.6±0.5 9±0.9 1.6±0.1 1.3±0.2 2.2±0.3 3.8±0.5 1.6±0.2 1.3±0.3 2.8±0.4 6.4±0.5 
C16:0 33.8±1.3 31.1±1.2 35.7±1.1 30.2±0.5 35.2±0.4 31.4±0.8 40.8±0.8 34.9±1.2 33.4±1.1 46.2±1.4 37±1.5 37.6±1.5 
17:0i 0.2±0 2.5±0.3 2.7±0.1 0.7±0.3 3.3±0.3 0.5±0.1 0.8±0.6 7.4±0.7 2.2±0.3 0.2±0 4.5±0.4 0.4±0 
C17:0ai 0.2±0.1 0.9±0.6 1.2±0.1 0.6±0.5 2.2±0.4 0.8±0.1 1.3±0.9 2.1±0.4 1.7±0.4 0.1±0 0.6±0.1 1±0.1 
C17:1 0±0 0±0 0±0 0±0 0±0 0.6±0.1 0±0 1.5±0.4 0±0 0±0 1.3±0.1 0±0 
C17:0 1.3±0 1.8±0.1 1.5±0.1 5±0.1 1.3±0.2 1.6±0.1 1.6±0.6 1.8±0.2 3.7±0.4 1.2±0.1 1.5±0.1 2.1±0.1 
C18:2 (n-6) 0±0 1.1±0.1 2.9±0.2 0±0 2±0 0.9±0.1 0±0 0.9±0.1 0.7±0.1 0±0 0±0 0±0 
C18:1 (n-9) 1±0.1 6.4±0.6 3.2±0.2 5.6±0.5 6.6±0.5 5.5±0.5 1.2±0.2 5.9±0.2 5.2±0.5 1.5±0.1 1.4±0.3 0.7±0.1 
C18:1 (n-7) 0±0 1.8±0.1 0±0 1.2±0.1 1.2±0.2 1±0.1 0±0 0.8±0.1 1.5±0.1 0±0 0±0 0±0 
C18:0 30.5±0.6 10.5±0.6 13.9±0.9 13.9±0.2 16.3±0.3 26.7±1.1 31.9±2.9 12.2±0.7 13.1±0.9 26±0.5 23.7±0.5 21.8±0.6 
19:0i 0.4±0.1 1.1±0.1 0±0 0.4±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 
19:0ai 0.2±0 1.3±0.1 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 
C20:4 (n-6) 0.4±0.2 1.9±0.3 1.9±0.3 1.4±0.1 0.3±0 0.1±0.1 0.1±0.1 0.5±0.1 0.3±0.1 0±0 0±0 0.5±0.2 
C20:2 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.4±0.1 0±0 0±0 0±0 0.8±0.1 
C20:1 1.5±0.1 0.8±0.3 0.1±0 1.7±0.2 2.7±0.1 4.3±0.1 1.8±0.4 2.9±0.2 4.1±0.6 0±0 0.4±0 3.7±0.2 
C20:0 1±0.1 1.7±0.2 0.9±0.1 1.3±0.1 1.4±0.1 1.7±0 0.3±0.4 1.4±0.2 1.6±0.3 0.9±0 0.7±0 1.2±0.1 
C22:5 (n-3) 0.4±0.1 0±0 0±0 0.5±0.1 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 
C22:6 (n-3) 0.5±0.1 1.1±0.1 1±0.1 2.8±0.1 0.7±0 0.3±0.3 0.5±0.2 1.3±0.1 1.4±0.2 1.7±0.3 0.6±0 1.2±0.1 
C22:3 0.1±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.7±0.1 0.5±0.1 1.8±0.1 
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Table S4. (cont.) 

A. SPM - PAG 
FAME May June July August September October November December January February March April 

C22:2 (n-6) 0.9±0.1 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.7±0 0±0 
C22:1 3.2±0.1 1.9±0.3 2.6±0.1 2.4±0.3 1.1±0.1 1.4±0.1 3.6±0.3 2±0.1 3.5±0.2 4.3±0.6 8.3±0.4 4.7±0.7 
C22:0 1±0.1 2.7±0.8 1.5±0.1 1.9±0.2 3.6±0.3 3.3±0.2 1.2±0.1 3.2±0.2 4.3±1.4 2±0.1 3.4±0.2 1.9±0.2 
C24:1 (n-9) 1.2±0.3 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.3±0.1 0±0 
C24:0 1.5±0.7 2.3±0.4 0.9±0 2.7±0.1 3.6±0.3 2.5±0.7 2.7±0.3 3.8±0.6 2.3±1 3.4±0.9 1.2±0 2.9±0.2 
ƩSFA 79.7±0.6 69.9±1.4 67±1 68.8±1 80±0.3 82.7±0.8 88.3±1.7 75±0.2 77.3±1 89.1±0.7 81.3±1.2 77.9±0.8 
ƩMUFA 16.3±0.4 17.8±1.2 18.5±0.7 19.9±1.3 13.3±0.5 14.3±0.3 8.8±0.3 16.8±0.5 17.3±0.8 7.1±0.9 14.6±0.8 15.5±0.8 
ƩPUFA 3.4±0.4 11.1±0.4 12.8±0.4 10.6±0.3 4.1±0.1 2.3±0.6 1.1±0.2 5.9±0.1 3.8±0.2 3.5±0.2 3.3±0.3 5.2±0.3 
ƩUND 0.4±0 1±0 1.1±0.1 1.1±0.1 0.3±0 0.3±0 0.2±0 0.6±0 0.5±0 0.3±0 0.3±0 0.4±0 
ƩDETRITAL 2.6±0.3 15.6±0.8 7.9±0.2 12.4±0.9 14.2±0.5 10.2±0.6 7.3±2.3 14±1.2 16.7±0.2 5.2±0.2 10.7±0.6 7.9±0.3 
C16:1/C16:0 0.3±0 0.2±0 0.4±0 0.3±0 0±0 0±0 0.1±0 0.1±0 0±0 0±0 0.1±0 0.2±0 

             

B. SPM - CETINA 
FAME May June July August September October November December January February March April 

C14:0 14.3±0.5 8.1±0.4 3.9±0.2 5.3±0.4 15.3±0.4 3.5±0.4 5.2±0.8 5.4±0.5 6.1±0.6 5±0.1 6.7±0.1 5.1±0.1 
C15:0i 0±0 0±0 1±0.1 0±0 0±0 4.4±0.4 2.7±0.1 2.1±0.2 1.9±0.1 3.3±0 3.7±0.1 1.4±0.1 
C15:0ai 0±0 0±0 1.4±0.1 0±0 0±0 4.1±0.1 1.6±0.1 1.8±0.2 1.7±0 0.3±0.1 1.5±0.2 0.9±0.1 
C15:0 1.4±0.1 1.2±0.1 2.1±0.1 3.6±0.5 2±0.1 1.5±0.2 1.5±0.1 2.1±0.1 3.7±0.2 1.9±0.2 2.4±0.2 2.4±0 
C16:0i 0±0 1.5±0.1 0±0 3.7±0.3 0±0 1.7±0.5 0±0 0±0 0±0 3±0.3 0±0 0±0 
C16:1 3.5±0.4 12.4±0.1 11.8±0.3 7.5±0.3 4.8±0.2 5.5±0.4 5.9±0.3 10.8±1.1 10.2±0.2 9.8±0.8 8.8±0.3 9.4±0.2 
C16:0 33.4±0.8 26.4±0.9 22.1±1 22.9±0.7 33.3±0.7 29±0.6 35.7±0.7 30.6±0.5 32.6±0.4 28.4±0.8 27.9±0.9 19.7±0.7 
C17:0i 3±0.1 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 1.6±0 0±0 0±0 
C17:0ai 4.6±0.4 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 3.7±0.2 0±0 0±0 
C17:0 1.8±0.2 0.8±0.1 3.9±0.2 5.7±1 4.1±0.1 4.6±0.4 2.9±0.3 3.1±0.1 3.7±0.3 3.8±0.1 3.2±0.1 3.7±0.2 
C18:2 (n-6) 0.2±0 0±0 6.6±0.1 5.2±0.2 0.3±0.1 2.3±0.1 0±0 1.2±0.1 1.7±0.2 0±0 0±0 4.3±0.2 
C18:1 (n-9) 3.6±0.4 6.9±0.5 7.3±0.8 5.6±0.7 2.7±0.5 3.6±0.3 1.9±0.1 2.4±0.3 3±0.1 4±0.1 5±0.1 7.1±0.2 
C18:1 (n-7) 1.1±0.1 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 
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Table S4. (cont.) 

B. SPM - CETINA 
FAME May June July August September October November December January February March April 

C18:0 16.5±0.6 17.1±0.7 14.1±1.1 15.7±0.4 20.8±1.1 7.6±0.3 21.7±1.7 17.9±0.7 13±0.1 12.3±0.2 14.3±0.4 14.6±0.4 
19:0i 1.6±0.1 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 
C19:0 0±0 0±0 0±0 0±0 0±0 7.4±0.4 0±0 0±0 0±0 0±0 0±0 0±0 
C20:4 (n-6) 0.2±0 0.6±0 0.3±0 0.1±0 0±0 0±0 1.5±0.6 0.4±0.1 1.2±0.1 0.2±0 0.2±0.1 0.6±0.1 
C20:5 (n-3) 0.3±0 2±0.2 3.1±0.1 1.2±0.1 1.5±0.1 0±0 2.3±0.2 0.7±0.2 2.9±0.1 1.2±0.1 0.9±0.1 1.4±0.2 
C20:1 1.6±0.1 4.9±0.2 5.6±0.5 0±0 4.4±0.3 4.7±0.3 2.2±0.7 2.1±0.1 5.3±0.1 2.8±0.1 2.9±0.2 4.8±0.3 
C20:0 1.2±0 2.5±0.1 2±0.1 1.6±0 1.8±0.1 1.6±0.2 1.5±0.1 1.8±0.1 2.7±0 3.3±0.2 3.8±0.2 4.8±0.2 
C22:6 (n-3) 0.1±0 1.4±0.2 2.1±0.1 1.1±0.1 0.1±0 0±0 0±0 0±0 1.8±0.1 3.1±0.1 0.3±0 1.6±0.1 
C22:3 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0.2±0.3 0±0 0±0 0±0 
C22:1 2.5±0.2 6.7±0.3 0±0 6.7±0.4 2.8±0.1 8.8±0.4 4.8±0.1 7.8±0.4 2.1±0.4 5.1±0.1 6.7±0.3 11.7±0.7 
C22:0 3.3±0.2 7.1±0.1 7±0.1 8±0.2 3.5±0.2 6.7±0.4 4.2±0.1 5.5±0.2 2.7±0.1 3.2±0.1 3.8±0.1 2.5±0.1 
C24:1 (n-9) 1.8±0.1 0±0 2.9±0.2 0±0 0±0 0±0 0±0 0±0 0±0 0±0 2.2±0.1 0±0 
C24:0 3.5±0.1 0±0 2.6±0.2 5.6±0.4 2.1±0 2.5±0.6 3.4±0.1 4.1±0.1 3.2±0.5 3.8±0.5 5.3±0.3 3.9±0.1 
ƩSFA 80±1.7 64.7±1.4 60±0.8 72±1 82.8±0.9 74.8±0 80.6±0.4 74.4±0.2 71.2±0.4 69.9±1 72.6±0.3 58.9±0.9 
ƩMUFA 14.1±1 30.9±0.9 27.7±1 19.8±0.8 14.7±0.8 22.6±0.4 14.8±1 23.1±0.4 20.7±0.6 21.7±0.8 25.6±0.2 33±0.8 
ƩPUFA 0.8±0 3.9±0.3 12.1±0.1 7.5±0.3 1.9±0.1 2.3±0.1 3.8±0.8 2.3±0.4 7.8±0.6 4.5±0.1 1.5±0 7.8±0.2 
ƩUND 0.2±0 0.8±0.1 1.2±0 0.6±0 0.3±0 0.4±0 0.4±0 0.4±0 0.8±0 0.7±0 0.5±0 1±0 
ƩDETRITAL 13.5±0.2 3.5±0.2 8.4±0.1 12.9±1.4 6.1±0.1 23.8±0.6 8.8±0.2 9.2±0.3 10.9±0.5 17.7±0.4 10.7±0.3 8.3±0.1 
C16:1/C16:0 0.1±0 0.5±0 0.5±0 0.3±0 0.1±0 0.2±0 0.2±0 0.4±0 0.3±0 0.3±0 0.3±0 0.5±0 

             

Sed - PAG 
FAME May June July August September October November December January February March April 

C14:0 10.3±10.3 4.8±5 0±0 6.2±6.5 6.6±6.1 8.5±8.6 10.9±11.1 6.4±6.5 n.a. 3±3.1 0±0 0±0 
C15:0i 0±0 0±0 0±0 3.6±3.5 2.5±2.5 2.5±2.6 0±0 0.8±0.8 n.a. 6.2±6.2 0±0 0±0 
C15:0ai 0±0 0±0 0±0 3.4±3.6 0±0 2.1±2.1 0±0 0±0 n.a. 1.1±1.1 0±0 0±0 
C15:1 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 0±0 0±0 0±0 
C15:0 2.6±2.6 2.4±2.5 0±0 3.6±3.5 4.4±4.3 6.6±6.5 3.4±3.5 1.5±1.5 n.a. 2.5±2.5 0±0 0±0 
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Table S4. (cont.) 

Sed - PAG 
FAME May June July August September October November December January February March April 

C16:0i 0±0 0±0 0±0 0±0 0±0 0±0 0±0 1±1 n.a. 0±0 0±0 0±0 
C16:1 8.3±8.2 4.2±4.4 7.1±6.5 8.2±8.5 5.2±5.1 3.8±3.8 3±3 6.6±6.5 n.a. 0±0 4±4.1 4.6±4.7 
C16:0 41.5±41.7 34.7±34 30.7±30.5 33.2±32 38.2±38 36.2±36 41.7±41.5 32.7±32.8 n.a. 16.4±17 16.1±16 14.8±15 
17:0i 0±0 5.2±5.2 5.7±4.6 1.1±1.3 1.8±1.8 0±0 0±0 5.5±4.9 n.a. 4.3±4.2 1.3±1.3 0±0 
C17:0ai 0±0 3.4±3.3 0±0 0±0 0±0 0±0 0±0 1.4±1.4 n.a. 0±0 0±0 0±0 
C17:1 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 0±0 0±0 0±0 
C17:0 3.2±3.1 2.7±2.8 4.9±4.6 3.3±3.5 2.5±2.4 0±0 1.9±1.9 1.6±1.5 n.a. 3.5±3.5 4.5±4.6 4.6±4.6 
C18:3 (n-6) 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 0±0 0±0 0±0 
C18:0i 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 0±0 0±0 0±0 
C18:2 (n-6) 2.4±2.3 3.1±3.2 5.9±6.3 4.4±4.5 1.1±1 2.4±2.4 1.6±1.6 1.2±1.2 n.a. 2.5±2.5 3.1±3.1 4.7±4.8 
C18:1 (n-9) 6.5±6.5 6.3±6.4 4.4±4.7 5.1±5 3±3.2 9±9 3.9±3.8 5.2±5.2 n.a. 8.7±8.7 15.5±16 17.5±18 
C18:1 (n-7) 3.9±3.8 1.6±1.6 0±0 0±0 0±0 0±0 0±0 2.2±2.1 n.a. 0±0 0±0 0±0 
C18:0 12.3±12.3 13±13 9.7±10.6 10.6±11 13.9±14.1 17.8±18 16.8±16.8 9.5±9.5 n.a. 7.8±7.9 6.3±6.2 3.5±3.4 
19:0i 2.8±2.8 1.7±1.7 0±0 0±0 2.2±2.5 0±0 1.1±1.1 1.3±1.2 n.a. 1.7±1.7 0.7±0.7 5.9±5.9 
19:0ai 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 0±0 0±0 0±0 
C19:0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 6.1±6.1 8.1±8.1 9.5±9.6 
C20:4 (n-6) 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 0±0 0±0 0±0 
C20:5 (n-3) 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 0±0 0±0 0±0 
C20:2 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 0±0 0±0 0±0 
C20:1 0±0 9.7±9.7 5.3±5.6 1.8±1.6 5±5.4 0±0 1.7±1.7 5.8±6.7 n.a. 10.1±10 13.8±14 11.7±11 
C20:0 1.1±1.1 1.1±1.1 4.6±4.7 3.5±3.4 1.5±1.7 4±4 1.3±1.3 1±0.9 n.a. 9.9±9.7 13.5±13 0.9±0.8 
C22:5 (n-3) 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 0±0 0±0 0±0 
C22:6 (n-3) 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 0±0 0±0 0±0 
C22:3 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 0±0 0±0 0±0 
C22:2 (n-6) 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 n.a. 0±0 0±0 0±0 
C22:1 0±0 2.3±2.3 7.7±7.9 3.6±3.6 3.9±3.8 0±0 0±0 4.8±5.4 n.a. 8.2±8.2 6.9±6.9 13.1±13 
C22:0 1.2±1.3 3±2.9 9.2±9.3 3.5±3.3 3.8±3.8 4.6±4.5 5±5.1 2.4±2.3 n.a. 2.2±2.1 1.5±1.5 5.4±5.6 
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Table S4. (cont.) 

Sed - PAG 
FAME May June July August September October November December January February March April 
C24:1 (n-9) 0±0 0±0 0±0 0±0 0±0 0±0 0±0 3.4±2.6 n.a. 2±2 3.1±3.1 1.8±1.8 
C24:0 3.8±3.9 0.5±0.5 4.1±3.8 4.4±4.5 4±4 2±2 7.1±7 3.6±3.8 n.a. 3.4±3.4 1.5±1.5 1.8±1.7 
ƩSFA 78.9±79 69.1±69 68.8±68 76.5±76 82±81.8 84.3±84 89.3±89.4 67.4±66.8 n.a. 68.2±68 53.5±53 46.5±47 
ƩMUFA 18.7±18.5 24.2±24 24.5±24.6 18.7±19 16.8±17.1 12.9±13 8.7±8.6 29.9±30.4 n.a. 28.9±29 43.4±44 48.8±49 
ƩPUFA 2.4±2.3 3.1±3.2 5.9±6.3 4.4±4.5 0.7±0.6 2.4±2.4 1.6±1.6 1.2±1.2 n.a. 2.5±2.5 3.1±3.1 4.7±4.8 
ƩUND 0.3±0.3 0.4±0.4 0.5±0.5 0.4±0.4 0.2±0.2 0.2±0.2 0.1±0.1 0.5±0.5 n.a. 0.5±0.5 0.9±0.9 1.3±1.3 
ƩDETRITAL 12.5±12.4 17±17.1 10.6±9.2 15.1±15 13.7±13.9 11.2±11 6.4±6.5 15.3±14.5 n.a. 25.4±25 14.7±15 20.1±20 

C16:1/C16:0 0.2±0.2 0.1±0.1 0.2±0.2 0.3±0.3 0.1±0.1 0.1±0.1 0.1±0.1 0.2±0.2 n.a. 0±0 0.3±0.3 0.3±0.3 

 

D. Sed - CETINA 
FAME May June July August September October November December January February March April 

C14:0 6.4±0.8 5.5±0.4 5±1 7.4±0.3 7.9±0.3 8.5±0.4 5.2±0.2 11.6±1.2 5.1±0.7 5.5±0.5 6.1±0.5 6.6±0.5 
C15:0i 0.4±0.1 1.9±0.1 0.9±0.1 0.6±0.2 0.7±0.1 1±0.1 1.9±0.6 1.4±0.3 8.6±0.8 2±0.2 1.8±0.3 1.9±0.2 
C15:0ai 0.7±0 1.2±0.1 0.3±0.2 0.8±0.1 0.6±0.1 0±0 0.4±0.1 1.8±0.1 0±0 2±0.3 1.8±0.1 0±0 
C15:0 7.6±1.8 6.1±0.1 5±0.3 4.9±0.3 3.8±0.3 2.5±0.4 7.2±0.8 3.6±0.4 4.4±0.7 2.3±0.2 4.5±0.4 4±0.2 
C16:0i 1±0.1 0.2±0.1 1.2±0.1 0.6±0.2 0±0 0±0 2.2±0.9 0±0 0±0 2.1±0.4 0.6±0.2 0±0 
C16:1 6.6±0.5 8.1±0.5 11.4±1.1 10.7±0.6 4.7±0.4 8.5±0.7 12±1.4 2.7±0.3 4.7±0.4 4±0.2 5.9±1.1 4.8±1.1 
C16:0 36.9±1.3 31.8±1.1 21.9±2.2 41.1±0.9 43.5±0.6 39.7±1.5 35.6±1.2 40.8±1.7 31.1±3.3 31.9±1.6 33.7±1.1 34.3±1.5 
17:0i 1.8±0.1 4.3±0.3 5.8±0.4 1.6±0.5 0±0 1.3±0.1 4.6±0.5 0±0 1.4±0.3 3.4±0.6 2.5±0.4 3.4±0.4 
C17:0ai 2.9±0.2 1.6±0.3 4.1±0.4 1.7±0.5 0.6±0.1 0.8±0.1 4.5±0.5 0±0 0.3±0.2 4.7±0.4 3.7±0.5 0±0 
C17:1 1.8±0.2 3±0.1 0±0 1.7±0.3 0.7±0 0±0 0±0 0±0 0±0 0±0 3.1±0.1 0±0 
C17:0 2.7±0.1 2.5±0.1 3.4±0.3 1.9±0.2 2.7±0.1 2.5±0.2 3±0.2 2.5±0.7 3.3±0.4 2.3±0.4 2.9±0.2 5.8±0.2 
C18:2 (n-6) 0.6±0.1 1.8±0.2 3.4±0.4 0.5±0.1 0.5±0.1 0.6±0.1 0.9±0.2 0.7±0.1 0.6±0.1 0.7±0.1 0.9±0.1 1.5±0.3 
C18:1 (n-9) 3±0.2 3.3±0.1 6.3±0.4 3.2±0.3 2.6±0.2 3.4±0.4 3.8±0.3 5.6±0.3 4.9±0.5 6.2±1.1 3.6±0.6 5.6±0.5 
C18:1 (n-7) 1.2±0.2 1±0.1 1±0.3 1.3±0.1 1±0.1 1±0.1 1.5±0.2 0±0 0±0 0±0 1.5±0.4 0±0 
C18:0 11.5±1.1 9.3±0.7 6.6±0.4 10.4±0.4 15.8±0.5 10.7±0.8 8±0.5 12.4±1.4 10.7±0.8 10.7±0.7 7.7±0.4 10.6±1.5 
19:0i 0.7±0.1 1.3±0.1 1.8±0.3 0.4±0.1 0±0 1.1±0.1 0.9±0.2 0±0 3.4±0.5 2.5±0.5 1.4±0.6 0±0 
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Table S4. (cont.) 

D. Sed - CETINA 
FAME May June July August September October November December January February March April 

19:0ai 0±0 0±0 0±0 1.2±0.2 0±0 0±0 0±0 0±0 0±0 0±0 0±0 0±0 
C19:0 1.9±0.2 0.1±0 3.7±0.5 0.3±0.1 0±0 1.2±0.2 0±0 0±0 0±0 0±0 1.6±0.1 0±0 
C20:1 1.4±0.1 3.1±0.4 3.1±0.4 1.8±0.8 0.3±0.1 2.9±0.1 1.6±0.1 0±0 0±0 4.8±0.6 1.5±0.1 0±0 
C20:0 0.9±0.2 1.2±0.1 1.1±0.1 1±0 1.3±0.4 1.5±0.1 0.7±0.3 2.3±0.5 4.5±0.5 1.4±0.5 0.8±0.1 2.3±0.3 
C22:1 1.7±0.1 4.6±0.3 2±0.1 2.4±0.1 1.3±0.1 2.7±0.2 1.4±0.1 1.2±0.1 3.6±0.4 3.3±0.2 1.8±0.3 6.3±0.5 
C22:0 3.5±0.3 2.7±0.4 3.6±0.4 1.9±0.2 3.7±0.3 3.1±0.1 1.8±0.1 5.7±0.2 5.1±0.7 4.8±0.3 2.3±0.2 6.1±0.6 
C24:1 (n-9) 0.8±0.2 0.4±0.1 3.6±0.4 0.3±0.1 1.3±0 1.3±0.3 0.5±0.4 1.9±0.2 2.7±0.6 0.7±0.2 4.5±0.4 2.9±0.1 
C24:0 3.8±0.4 4.9±0.3 4.6±0.5 2.2±0.3 6.3±0.5 5±0.6 2±0.3 5.4±0.5 4.8±0.3 4.1±0.7 5.7±0.4 3.4±0.6 
ƩSFA 79.7±0.6 73.7±1.1 66.1±3.7 76.1±1.1 86.4±0.1 77.9±1.1 73.6±2.1 87.6±0.2 82.5±0.9 75±1.1 73.3±1 75.2±3.3 
ƩMUFA 16.5±1.3 23.2±0.8 26.8±2.5 21.3±0.6 11.9±0.2 19.9±0.8 20.8±2.3 11.4±0.2 15.9±1.1 19.1±1.5 21.9±0.6 23.3±4.4 
ƩPUFA 0.6±0.1 1.5±0.5 2.7±1.2 1±0.4 0.5±0.1 0.6±0.1 0.9±0.2 0.7±0.1 0.6±0.1 0.7±0.1 0.9±0.1 1.1±0.8 
ƩUND 0.2±0 0.4±0 0.5±0.1 0.3±0 0.1±0 0.3±0 0.3±0 0.1±0 0.2±0 0.3±0 0.3±0 0.3±0.1 
ƩDETRITAL 20.8±1.9 20.2±0.4 27.3±1.2 15.1±1.6 9.5±0.2 11.3±0.6 26.2±1.5 9.3±1.3 21.5±1.4 21.3±0.4 22.2±0.9 15.1±0.3 
C16:1/C16:0 0.2±0 0.3±0 0.5±0.1 0.3±0 0.1±0 0.2±0 0.3±0.1 0.1±0 0.2±0 0.1±0 0.2±0 0.1±0 
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Table S5. Fatty acid contribution (mean % TFA ± SD) of consumers: (PG) Glycymeris bimaculata from Pag, (PC) Callista chione from Pag, (CG) Glycymeris bimaculata from Cetina and (CC) 

Callista chione from Cetina. FA with annual mean proportions > 1% are shown. SFA: saturated FA; MUFA: monosaturated FA; PUFA: polyunsaturated FA; UND: unsaturation degree (Pirini et 

al. 2007) ; DETRITAL: detrital FA [15:0+15iso+15anteiso+17:0+17iso+17anteiso+18:1(n-7)] (Mayzaud et al. 1989, Najdek et al. 2002); DHA: C22:6(n-3); EPA: C20:5(n-3). 

 

PG. Glycymeris bimaculata - PAG 

FAME May June July August September October November December January February March April 

C14:0 8.8±2.2 7.6±1.2 6.3±0.7 5.6±0.4 7.2±0.1 7.2±0 7.3±0.1 8.7±1.4 7.4±0.1 11±0.3 13.1±0.1 12.2±0.4 

C15:0i 0±0 0.1±0.1 0.1±0 0.1±0 0.2±0 0.2±0 0.2±0 0.2±0 0.1±0.1 0.2±0 0.2±0 0.2±0 

C15:0ai 0±0 0±0.1 0.1±0 0±0 0.1±0.1 0.2±0.1 0.1±0 0±0 0.1±0.1 0.1±0 0.1±0 0.1±0 

C15:0 0.7±0.2 0.7±0 0.7±0.1 0.6±0.1 0.9±0 1.1±0 1±0.1 1±0 1.1±0.1 1.1±0 1.1±0 0.9±0 

C16:1 12.5±0.2 10.5±0.2 14.8±0.9 13.5±0.3 9.2±0.3 10.1±1 6.3±0.5 6.3±0.6 6±2.4 7.3±1.2 8.6±2.8 10.6±0.8 

C16:0 34.7±3.9 36.4±0.9 33.7±0.4 34.4±1.1 42.7±1.5 40±3.5 46.9±3 49.8±2.8 45.4±5.4 45.4±4.1 44.2±5.1 39.2±3 

17:0i 0.9±0.4 1±0 0.9±0.1 0.9±0.2 1.6±0.7 2.3±0.3 1.6±0.4 1.1±0 0.9±0.3 1±0.2 1.1±0.1 0.8±0.2 

C17:0ai 0±0 0.1±0.1 0.2±0 0.2±0.1 0.3±0 0.3±0.1 0.4±0.1 0.4±0.1 0.3±0.1 0.3±0 0.3±0 0.2±0 

C17:1 0.1±0.1 0±0.1 0.2±0 0.2±0 0.2±0.1 0.2±0.1 0±0 0±0.1 0.1±0.1 0.1±0 0.1±0 0.1±0 

C17:0 2.2±0.5 2.4±0.1 2.2±0.2 2.2±0.1 3.1±0.1 3±0.5 3.9±0.8 3.5±0.3 3.9±0.3 3.2±0.2 2.9±0.3 2.4±0.2 

C18:3 (n-6) 1±0.3 0.8±0.1 0.7±0.1 0.5±0.2 0.3±0.1 0.3±0.1 0.3±0 0.3±0 0.4±0.2 0.5±0.2 0.4±0.1 0.9±0.3 

C18:0i 0.3±0.1 0.3±0 0.3±0 0.3±0 0.4±0 0.4±0 0.5±0.1 0.4±0.1 0.4±0 0.4±0 0.4±0 0.3±0 

C18:2 (n-6) 2.4±0.3 2.5±0.1 2.5±0.1 2.2±0.3 1.4±0.1 1.7±0.6 0.8±0.5 0.7±0.1 1.2±0.5 1.3±0.5 1.1±0.5 2±0.3 

C18:1 (n-9) 9.9±0.5 10.9±1 11.3±0.5 9.7±0.1 8.6±0.3 9.6±1.4 6.2±2.2 5.8±0.2 8±2.3 6.6±1.2 5.6±1.5 8.5±0.4 

C18:1 (n-7) 2.3±1 0.3±0.1 0.3±0 0.2±0 0.2±0.1 0.3±0.1 0.2±0.3 0.1±0.1 0.3±0.4 0.3±0.1 0.3±0.1 0.4±0 

C18:0 12±1.1 12.1±0 10.3±0 11.6±0.6 14±1.1 14±0.7 17.3±1.9 16.5±0.5 16.5±2.8 13.5±0.4 12.8±2.2 10.7±1.1 

19:0i 0.4±0.1 0.5±0 0.4±0 0.4±0.1 0.5±0 0.7±0.1 0.7±0.1 0.5±0 0.6±0 0.5±0 0.5±0 0.4±0 

19:0ai 0±0 0±0.1 0±0.1 0±0.1 0.1±0.1 0.1±0.1 0.1±0.1 0.2±0.1 0.2±0.3 0.1±0 0.1±0.1 0.1±0 

C19:0 0.4±0 0.4±0 0.3±0 0.3±0.1 0.4±0 0.5±0 0.5±0.1 0.5±0 0.5±0 0.4±0 0.4±0 0.3±0 

C20:4 (n-6)  0.5±0.2 0.5±0.1 0.6±0 0.6±0.3 0.2±0 0.4±0.3 0±0 0.2±0.3 0.3±0.4 0.2±0.1 0.1±0.1 0.2±0.1 

C20:5 (n-3)  2.3±1.2 2.5±0.4 3.3±0.3 2.6±0.5 0.4±0.2 0.8±0.6 0.1±0.1 0±0.1 0.2±0.3 0.6±0.6 0.8±0.8 0.9±0.4 

C20:3 0.3±0 0.7±0 0.8±0.2 0.7±0.2 0.3±0.3 0.4±0.3 0.1±0.1 0±0 0±0 0.1±0.1 0.1±0.1 0.2±0.1 

C20:2 0.3±0.5 0±0 0.1±0 0±0 0.2±0 0.2±0.1 0±0 0±0.1 0±0 0.1±0 0.1±0.1 0.2±0.1 
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Table S5. (cont.) 

 

PG. Glycymeris bimaculata - PAG 

FAME May June July August September October November December January February March April 

C20:1 3.5±0.9 4.6±0.1 3.9±0.7 6.6±1.4 3.9±0.2 3.3±0.9 3.2±0.7 2.5±0 3.4±1.3 3.2±0.9 2.8±0.7 4.3±1.4 

C20:0 0.4±0 0.4±0.1 0.3±0.1 0.3±0 0.4±0 0.5±0 0.5±0 0.5±0.1 0.6±0.1 0.4±0 0.5±0 0.4±0 

C22:5 (n-3) 0.2±0.1 0.2±0 0.2±0 0.1±0 0±0 0.1±0 0±0 0±0 0±0 0±0 0±0 0.1±0 

C22:6 (n-3)  2±1.6 2.4±0.5 2.8±0.1 2.3±0.8 0.3±0.1 0.6±0.6 0±0 0±0 0.1±0 0.5±0.1 0.4±0.1 0.7±0.4 

C22:3 0.3±0.1 0.4±0.2 0.3±0.2 0.1±0.1 0±0.1 0.1±0.2 0±0 0±0 0±0 0.1±0 0±0.1 0±0 

C22:2 0.8±0.3 0.9±0.1 0.9±0.8 0.5±0.2 0.3±0.2 0.2±0.2 0±0 0±0 0±0 0.1±0.1 0.2±0 0.3±0.1 

C22:1 0.2±0.3 0±0 0.6±0.2 2.4±1.3 1.7±1.3 0.3±0.2 0.5±0 0.3±0.1 1±0.4 0.4±0.3 0.9±0.2 1.2±0.5 

C22:0 0.2±0 0.5±0 0.4±0 0.2±0 0.4±0.1 0.3±0.2 0.4±0.2 0.2±0.3 0.3±0.4 0.3±0.2 0.2±0 0.2±0.1 

C24:0 0.3±0.1 0.5±0.1 0.4±0.1 0.3±0 0.5±0.2 0.6±0.1 0.7±0 0.2±0.3 0.8±0.1 0.4±0 0.5±0 0.4±0 

ƩSFA 61.4±3.1 62.9±2.6 56.6±0.8 57.7±0.9 72.7±0.6 71.3±2.4 82.2±1.6 83.7±0 79±7.7 78.3±5.3 78.4±1.5 69±1.8 

ƩMUFA 28.8±1.5 26.4±1.2 31.3±0.2 32.7±1.1 23.9±1.2 23.9±1.5 16.5±2.9 15±0.1 18.9±6.3 18.1±3.2 18.4±1.4 25.3±1.1 

ƩPUFA 9.8±2.6 10.7±1.4 12.1±1 9.6±2.2 3.4±0.6 4.8±2.9 1.3±0.7 1.3±0.1 2.1±1.4 3.6±2.1 3.3±2.2 5.7±1.7 

ƩUND 1.1±0.6 1.1±0.2 1.4±0.1 1.2±0.1 0.5±0 0.6±0.2 0.2±0.1 0.2±0 0.3±0.2 0.4±0.2 0.4±0.2 0.6±0.2 

ƩDETRITAL 7.3±2 5.8±0.4 5.4±0.6 5.4±0.9 7.8±0.8 9±0.1 9.3±0.2 7.8±0.3 8.3±1.1 7.7±0.2 7.4±0.1 6.2±0.6 

C16:1/C16:0 0.4±0.2 0.3±0 0.4±0 0.4±0 0.2±0 0.3±0 0.1±0.1 0.1±0 0.1±0.1 0.2±0 0.2±0.1 0.3±0 

DHA/EPA 0.8±0.3 1±0 0.9±0 0.9±0.1 0.7±0 0.7±0.1 n.d. n.d n.d. 0.7±0.2 0.5±0 0.7±0.1 

 

PC. Callista chione - PAG 

FAME May June July August September October November December January February March April 

C14:0 9.7±0.4 7.9±1.1 6.2±0.4 6.4±0.3 6.9±0.1 9.2±1.2 9.3±0.1 10.5±0.2 12.8±1.8 10.8±0.3 11.5±1.5 11.9±0.2 

C15:0i 0.2±0 0.2±0 0.2±0 0.3±0 0.3±0.1 0.3±0.1 0.3±0 0.3±0 0.4±0 0.3±0 0.3±0.1 0.3±0 

C15:0ai 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0.1 0.1±0 0.1±0 0.1±0 0.2±0 0.1±0 0.1±0.1 0.1±0 

C15:0 1.1±0.1 0.9±0.1 0.9±0.1 1±0 1.4±0 1.6±0.1 1.5±0 1.9±0 2±0.3 1.8±0.1 1.4±0.1 1.4±0.1 

C16:2 0±0 0.1±0 0±0 0±0 0±0 0±0 0±0 0.3±0.4 0±0 0±0 0.5±0.1 0.5±0 

C16:1 13.2±0.6 12.9±1.4 16.5±0.2 19.1±1 14.6±0 12.9±1.2 14.7±0.7 10.4±1.1 10.1±1 14.1±0.3 14.8±1.7 14.9±0.2 
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Table S5. (cont.) 

PC. Callista chione - PAG 

FAME May June July August September October November December January February March April 

C16:0 28.8±0.1 29.6±0.9 27.5±0.2 34±1.2 40.4±1 38.8±3.2 33.8±0.5 37.8±0.2 42.1±4.3 36.1±1.2 33.1±2.2 31.3±2.2 

17:0i 2.6±0.3 1.2±0.1 1.3±0.2 1.8±0.3 3.3±0.2 1.8±0.1 2.6±0 5.3±1.8 2.5±0.6 2.1±0.6 4.4±1.9 3.3±0.6 

C17:0ai 0.8±0 0.6±0 0.6±0.1 0.7±0.1 1.2±0.2 0.9±0 1.1±0 1.3±0 1.2±0.1 0.9±0 0.8±0.2 0.7±0.2 

C17:1 0.3±0.1 0.2±0 0.2±0.1 0.2±0.1 0.4±0.1 0.2±0 0.3±0 0.2±0.1 0.2±0 0.2±0 0.2±0.2 0.3±0.2 

C17:0 1.5±0.1 1.2±0.1 1.2±0.1 1.4±0.1 2.2±0.1 1.8±0.2 1.8±0.1 2±0.1 2±0.2 1.7±0.2 1.7±0.1 1.4±0.1 

C18:3 (n-6) 1.4±0 1.5±0.1 1.3±0.2 0.7±0 0.5±0.1 0.5±0.1 0.6±0 0.7±0 0.6±0.2 1.2±0.1 0.7±0 1.4±0.2 

C18:0i 0.1±0 0.1±0 0±0.1 0.1±0 0.2±0 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0.1 0.1±0 

C18:2 (n-6) 2.7±0.1 2.9±0.1 2.6±0.1 1.9±0.1 1.3±0.1 1.4±0.4 2±0.1 1.3±0.3 1.2±0.5 1.9±0.2 1.4±0 2.3±0.2 

C18:1 (n-9) 12.4±0.4 12.4±0.4 10.4±0.3 9.7±0.3 10.3±0.7 10.6±0.3 12.1±0.8 10.2±1.3 9.6±1.7 10.7±0.8 8.8±1.8 11.4±0.1 

C18:1 (n-7) 0.3±0 0.4±0 0.2±0 0.2±0 0.2±0 0.2±0 0.3±0 0.1±0.2 0.3±0 0.4±0 0.4±0 0.3±0.1 

C18:0 6.3±0.1 5.6±0.1 4.7±0.1 5.8±0.2 7.9±0.1 7.4±1.1 6.8±0.2 6.8±0.3 7.8±0.5 6.7±0.3 5.8±0.6 5±0.1 

19:0i 0.3±0 0.1±0 0.1±0 0.1±0 0.2±0 0.1±0 0.2±0 0.4±0.2 0.3±0.2 0.1±0 0.4±0.3 0.2±0 

19:0ai 0.2±0 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0.2±0 0.3±0.1 0.1±0.2 0.1±0 0.3±0.2 0.2±0 

C19:1 0.2±0 0.2±0 0.2±0 0.1±0 0.2±0.1 0.2±0 0.2±0.1 0.3±0.1 0.3±0.2 0.1±0 0.1±0.1 0.3±0 

C19:0 0.3±0 0.2±0 0.2±0 0.2±0 0.4±0 0.3±0 0.3±0 0.4±0 0.5±0.2 0.3±0 0.3±0.1 0.2±0.1 

C20:4 (n-6) 0.7±0.1 0.8±0.1 0.9±0 0.9±0 0.3±0 0.3±0.2 0.8±0.1 0.3±0.1 0.2±0.2 0.4±0.1 0.3±0 0.3±0 

C20:5 (n-3) 3.3±0.2 5.4±0.1 8.9±0.2 5.6±0.3 1±0 0.7±0.5 1.7±0.1 0.6±0.1 0.3±0.2 1.5±0.2 1.9±0.2 1.1±1 

C20:3 0.8±0.1 0.8±0 1±0.1 0.8±0.1 0.2±0 0.2±0.2 0.3±0 0.3±0 0.2±0.1 0.3±0.1 0.4±0.1 0.5±0 

C20:2 1.7±0.1 1.7±0.2 1.7±0 1.4±0.2 1.1±0.1 1±0.2 1.5±0 0.8±0.3 0.7±0.5 1.3±0.1 1±0 1.4±0.1 

C20:1 3±0.2 4.5±0.8 3.1±2 1.5±0.1 1.8±0.1 5.4±0.1 2.4±0.2 1.7±0.4 2.2±1.9 3±2.2 1.8±0 1.5±0.1 

C20:0 0.3±0 0.2±0 0.2±0 0.3±0 0.3±0 0.3±0 0.3±0 0.3±0 0.3±0 0.2±0 0.2±0 0.2±0 

C22:5 (n-3) 0±0 0±0 0±0 0.3±0 0.1±0 0.1±0 0.2±0 0.1±0 0±0 0.1±0 0.1±0 0.1±0 

C22:6 (n-3) 3.4±0.1 5.1±0.2 6.9±0.5 3.2±0.4 0.5±0.1 0.4±0.3 1.3±0.1 0.3±0.2 0.2±0.2 1.1±0.2 0.6±0 1.5±0.2 

C22:3 0.3±0 0.3±0 0.3±0 0.2±0 0.1±0 0.1±0 0.2±0 0.3±0.1 0.1±0 0.1±0 0.3±0.2 0.2±0 

C22:2 (n-6) 1.7±0.8 0.6±0.5 1±0.1 0.9±0.1 0.9±0 0.7±0.2 1.2±0.1 1.3±0.9 0.5±0.1 0.8±0.3 2±2.1 1.9±0.2 

C22:1 1.3±0.3 1.8±1.8 0.5±0 0.2±0.1 0.9±0.5 1.7±0.1 0.7±0.3 2.2±1.2 0.4±0.1 0.5±0.5 3.4±3.2 2±0.2 
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Table S5. (cont.) 

PC. Callista chione - PAG 

FAME May June July August September October November December January February March April 

C22:0 0.1±0.2 0.1±0 0.2±0 0.1±0 0.2±0 0.1±0 0.2±0 0.4±0.2 0.1±0 0.2±0.1 0.4±0.3 0.3±0 

C24:0 0.2±0.1 0.1±0.1 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0.3±0.1 0.2±0.1 0.2±0.1 0.2±0.1 0.2±0 

ƩSFA 52.7±0.8 48.1±0.2 43.6±1.4 52.5±0.8 65.2±0.8 63.1±3.1 58.7±0.8 68.3±2.4 72.8±2 61.7±2.9 61±1.9 56.8±1.6 

ƩMUFA 30.8±0.1 32.4±0.9 31.2±2 31.1±0.3 28.4±0.3 31.1±1.4 30.8±1.1 25.2±2 23.2±2 29.2±2.2 29.4±0.7 30.8±0.6 

ƩPUFA 16.5±1 19.5±0.7 25.2±0.7 16.4±1.2 6.4±0.4 5.7±1.7 10.4±0.3 6.6±0.4 4±2 9.1±0.7 9.5±1.6 12.4±1 

ƩUND 1.7±0 2.3±0 3.2±0.1 1.9±0.1 0.7±0 0.8±0.2 1.1±0 0.6±0.1 0.5±0.2 1±0.1 1±0.1 1.2±0 

ƩDETRITAL 7.5±0.6 5±0 4.9±0.6 6±0.5 9.7±0.5 7.4±0.1 8.5±0.1 12.3±2.2 9.7±0.5 7.9±0.9 10.1±2 8.3±1 

C16:1/C16:0 0.5±0 0.4±0.1 0.6±0 0.6±0 0.4±0 0.3±0.1 0.4±0 0.3±0 0.2±0 0.4±0 0.4±0 0.5±0 

DHA/EPA 1±0 0.9±0.1 0.8±0 0.6±0 0.5±0.1 0.6±0 0.8±0 0.5±0.3 0.5±0.2 0.7±0.1 0.3±0 2.4±2.5 

 

CG. Glycymeris bimaculata - CETINA 

FAME May June July August September October November December January February March April 

C14:0 7.5±1.1 6.9±0.4 5.6±0 4.4±0.3 6.2±0.1 6.3±0.3 8.8±0.8 7.8±0.2 9±0.1 8.8±0.8 6.2±0.7 8.2±0.3 

C15:0i 0.2±0 0.1±0 0.1±0 0.1±0.1 0.2±0 0.1±0.1 0.3±0 0.2±0 0.2±0 0.2±0 0.1±0.1 0.2±0.0 

C15:0ai 0.1±0 0.1±0 0.1±0 0.1±0.1 0.1±0.1 0±0 0±0 0.1±0 0.1±0.1 0.1±0 0±0.1 0.1±0.0 

C15:0 0.8±0 0.7±0 0.7±0 0.6±0 1.1±0.3 1±0 1.1±0.2 0.8±0 0.9±0 0.9±0.2 0.6±0.1 0.7±0.1 

C16:0i 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0±0 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0.1 0.1±0.0 

C16:1 7.4±2.2 9.3±0.4 12.9±0.3 9.3±1.1 6.1±0.1 5.4±0.1 9.4±0.8 9.8±0.7 10±0.8 10.6±0.1 8.2±2.9 11.6±0.2 

C16:0 35.1±3.9 37.2±1.3 30.1±1.7 34.5±3.7 45.2±0 45.5±0.7 43.2±3.6 38.7±1.5 40.4±0.9 37.8±0.7 34.1±6.2 32.2±1.1 

17:0i 0.8±0 0.8±0.1 0.9±0.1 0.9±0.3 1.4±0.8 0.9±0.2 1.2±0 0.8±0 0.8±0.1 0.8±0.2 0.5±0.1 0.7±0.1 

C17:0ai 0.2±0 0.2±0 0.2±0 0.3±0 0.2±0 0.2±0 0.3±0 0.3±0 0.3±0 0.3±0 0.3±0.2 0.3±0.1 

C17:1 0.1±0.1 0.2±0 0.2±0 0.2±0 0±0 0±0 0.1±0.2 0.2±0 0.2±0 0.2±0 0.1±0.1 0.2±0.1 

C17:0 2.9±0.2 2.9±0.1 2.4±0.2 3±0.1 4.3±0.7 4±0.1 3.4±0.1 3.2±0.2 3.1±0.1 3±0.1 2.4±0.6 2.3±0.0 

C18:3 (n-6) 0.6±0.5 0.4±0.1 0.7±0 0.5±0 0.4±0.1 0.2±0.1 0.3±0 0.5±0.1 0.4±0 0.6±0.1 1.3±0.9 1.1±0.1 

C18:0i 0.4±0.1 0.3±0 0.4±0 0.5±0.1 0.6±0.2 0.4±0.2 0.5±0 0.5±0 0.4±0 0.4±0.2 0.3±0.1 0.3±0.0 
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Table S5. (cont.) 

CG. Glycymeris bimaculata - CETINA 

FAME May June July August September October November December January February March April 

C18:2 (n-6) 2.1±1.2 2.1±0.1 2.5±0.2 2.2±0.4 0.9±0.1 1.2±0.4 1.3±0.3 1.9±0.2 1.7±0.2 2±0.4 2.8±0.8 2.6±0.1 

C18:1 (n-9) 9.1±1.1 10±0.1 9.2±0.2 9±0.7 6.5±0.1 6.9±1.2 6.7±1.3 8.7±0.4 7.7±0.1 8.3±1.2 10.1±1.5 9.8±0.1 

C18:1 (n-7) 0.4±0.1 0.3±0 0.4±0 0.3±0 0.1±0.1 0±0 0.2±0 0.2±0 0.3±0 0.3±0 0.3±0.1 0.3±0.0 

C18:0 13.5±2.9 13.1±0.7 11.1±0.6 15.5±0.9 21.1±2.3 18.9±1.7 14.3±0.1 13.4±1.3 13.2±0.1 12.3±1.7 12.8±4.2 10.1±0.2 

19:0i 0.6±0.2 0.5±0 0.5±0 0.7±0.1 0.8±0.1 0.7±0.1 0.5±0 0.6±0.1 0.6±0.1 0.6±0 0.5±0.1 0.5±0.1 

C19:0 0.7±0.3 0.5±0 0.4±0 0.5±0.1 0.7±0.1 0.7±0.1 0.5±0 0.5±0 0.5±0 0.4±0 0.4±0.1 0.4±0.1 

C20:4 (n-6) 0.3±0.3 0.3±0 0.7±0.1 0.6±0.2 0±0 0±0 0.2±0.1 0.4±0.1 0.3±0.1 0.4±0.1 0.7±0.4 0.7±0.1 

C20:5 (n-3) 1.2±1.6 0.8±0.2 3.7±0.6 1.8±0.7 0±0 0±0 0.4±0.2 0.9±0.3 0.7±0.1 1.5±0.6 2.6±2.2 4.2±0.1 

C20:3 0.3±0.1 0.6±0 0.8±0.2 0.6±0.2 0.1±0.1 0±0 0.3±0.1 0.4±0 0.4±0.1 0.5±0.2 0.5±0.2 0.6±0.1 

C20:2 0.1±0.1 0.2±0 0.2±0 0.2±0 0±0 0±0 0.1±0 0.2±0 0.1±0 0.2±0 0.2±0.2 0.4±0.1 

C20:1 6.1±0.7 6.5±0.2 6.3±0.5 7.8±1.9 2.5±3.6 4.5±2 4.2±0.7 5.9±0.4 4.6±0.6 4.5±0.5 6.6±0 4.8±0.6 

C20:0 0.5±0.1 0.5±0.1 0.4±0 0.6±0.1 0.7±0.1 0.8±0 0.5±0 0.5±0.1 0.5±0 0.4±0 0.4±0.1 0.4±0.1 

C22:5 (n-3) 0.1±0.2 0.2±0 0.3±0 0.4±0.2 0±0 0±0 0.1±0.1 0.2±0.1 0.1±0 0.2±0 0.3±0 0.3±0.1 

C22:6 (n-3) 1.5±1.9 0.9±0.3 3.6±0.9 2.1±0.7 0±0 0±0 0.3±0.2 1±0.5 0.6±0.1 1±0.9 2.7±2.6 2.8±0.1 

C22:3 0±0.1 0±0 0.1±0 0.1±0.1 0±0 0±0 0±0 0±0 0±0 0±0 0.4±0.4 0.1±0.0 

C22:2 0.8±0 0.8±0.1 0.8±0 1.1±0 0±0 0.1±0.2 0.4±0.1 0.2±0.3 0.3±0 0.5±0 0.8±0.1 0.5±0.0 

C22:1 5.2±3.3 2.4±0.3 3.4±0.4 0.6±0 0.1±0.1 0.5±0.7 0.3±0.1 1.1±1.2 1.4±0.2 2.2±0.4 2.5±0.3 2.6±0.7 

C22:0 0.5±0 0.5±0.1 0.5±0.1 0.6±0.1 0.3±0.5 0.8±0.2 0.6±0 0.5±0 0.4±0.3 0.5±0.1 0.4±0.2 0.4±0.1 

C24:0 0.6±0.2 0.5±0.2 0.4±0 0.7±0 0.4±0.5 1.2±0.3 0.7±0.1 0.6±0.1 0.6±0 0.6±0 0.7±0.4 0.5±0.0 

ƩSFA 64.5±1.6 64.9±1.1 54.1±2.6 63.2±0.9 83.4±1.7 81.3±1.8 75.8±1.3 68.4±1.3 71.1±1.1 67.2±1.3 59.9±0.6 57.4±1.1 

ƩMUFA 28.3±0.8 28.8±1.2 32.6±0.8 27.2±3.6 15.2±0.8 17.2±1.8 20.8±1.1 25.9±2 24.1±0.5 26.1±0.9 27.8±0.5 29.4±0.5 

ƩPUFA 7.2±5.8 6.3±0.9 13.3±1.8 9.6±2.2 1.3±0.1 1.5±0.1 3.4±1.2 5.7±1.3 4.8±0.6 6.7±0.5 12.3±1.2 13.2±0.7 

ƩUND 0.9±0.5 0.8±0.1 1.6±0.3 1±0.3 0.2±0.1 0.3±0 0.4±0.1 0.7±0.1 0.6±0 0.7±0.4 1.3±0.9 1.5±0.1 

ƩDETRITAL 7.1±0.8 6.5±0.2 6.4±0.2 7.1±0.8 9.5±2.1 7.9±0.5 8±0.2 7.2±0.5 7.3±0.2 7±0.2 5.6±1 5.9±0.6 

C16:1/C16:0 0.2±0.1 0.3±0 0.4±0 0.3±0.1 0.1±0 0.1±0 0.2±0 0.3±0 0.2±0 0.3±0.1 0.3±0.1 0.4±0 

DHA/EPA 1.4±0.3 1.1±0 1±0.1 1.1±0.1 n.d. n.d. 0.8±0.2 1.1±0.1 0.8±0 0.6±0.1 0.9±0.2 0.7±0 
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Table S5. (cont.) 

CC. Callista chione - CETINA 

FAME May June July August September October November December January February March April 

C14:0 10.6±0.7 9.3±0.6 6.9±0.1 6.1±0.3 6.7±0.4 6.5±1.4 9.2±0.6 8±0.4 8.7±0 10±0.5 11.6±0 11.4±1 

C15:0i 0.3±0 0.3±0 0.2±0 0.3±0 0.3±0 0.2±0 0.3±0 0.2±0 0.2±0 0.2±0 0.2±0 0.2±0 

C15:0ai 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0.2±0 0.1±0 0.1±0 0.1±0 

C15:0 1.4±0 1.4±0.1 1.1±0 1.1±0.1 1.4±0.1 1.5±0.3 1.5±0.1 1.6±0.2 1.6±0 1.5±0.1 1.4±0.1 1.5±0 

C16:0i 0.4±0.1 0.3±0.1 0.5±0 0.6±0 0.6±0 0.5±0.1 0.6±0 0.5±0 0.6±0 0.6±0 0.5±0 0.5±0 

C16:1 13±0.7 16.1±1 16.3±0.5 15±0.9 13.7±2.1 11.1±1.2 13.1±1.4 11.9±0.5 10.6±0.2 13.1±0.8 13.8±0.3 13.1±0.3 

C16:0 32.8±3.1 24.3±1.5 30.6±0.3 30.6±2.7 38.9±0.2 35.1±6.5 38.8±1 37.3±1.2 40.6±0.8 38.6±0.9 36.1±2.3 38.4±0.7 

17:0i 1.4±0.1 1.5±0 1.3±0 1.6±0 2±0.2 2±0.1 2.1±0.1 2.1±0.2 1.8±0.4 1.7±0.1 1.4±0 1.4±0 

C17:0ai 0.8±0 0.8±0 0.7±0 0.9±0 1±0.1 1±0.2 1.1±0.1 1.2±0 1.1±0 0.9±0 0.8±0 0.8±0.1 

C17:1 0.2±0 0.3±0 0.2±0 0.3±0 0.2±0 0.2±0.1 0.3±0.1 0.3±0 0.2±0 0.2±0 0.2±0 0.1±0 

C17:0 1.6±0 1.6±0.1 1.3±0.1 1.5±0.1 2.1±0.2 1.9±0.4 2.2±0.3 2.3±0.2 2.7±0.4 1.9±0 1.5±0.1 1.7±0 

C18:3 (n-6) 0.5±0.4 0.1±0 1±0.1 0.4±0.4 0.4±0 0.5±0 0.5±0 0.5±0 0.5±0.1 0.6±0.1 1.1±0.2 0.5±0.1 

C18:0i 0.6±0.7 1.2±0.2 0.1±0 0.4±0.5 0.1±0 0.1±0 0.2±0 0.2±0 0.2±0 0.2±0 0.1±0 0.1±0 

C18:2 (n-6) 2.9±0.5 3.5±0.4 2.6±0.1 2.4±0.1 1.3±0.1 1.6±0.1 1.2±0.1 1.4±0.2 1.2±0.3 1.4±0.1 2.2±0.3 1.4±0.1 

C18:1 12.2±0.8 13.5±0.1 10±0.1 10.8±0.2 10.9±0.4 10.5±1.2 9.5±0.4 10.5±0.4 9.4±0.7 9.8±0.3 11.5±0.4 10.8±0 

C18:1 (n-7) 0.4±0.1 0.4±0 0.3±0 0.3±0 0.3±0 0.2±0 0.2±0 0.3±0 0.3±0 0.4±0 0.4±0 0.4±0 

C18:0 6.5±0.1 5.9±0.3 5.1±0.1 5.7±0.5 8.3±0.9 7.3±1.5 8.4±0.6 9.1±0.8 10.2±0.2 8.4±0.2 6.4±0 8.1±0.5 

19:0i 0.3±0.2 0.2±0 0.1±0 0.2±0 0.2±0 0.2±0 0.2±0 0.2±0.1 0.3±0 0.1±0 0.1±0 0.1±0 

19:0ai 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0.1±0 0±0.1 0.1±0 0±0.1 

C19:1 0.3±0 0.3±0 0.1±0 0.2±0 0.2±0 0.2±0 0.2±0.1 0.1±0 0.2±0.1 0.1±0.1 0.3±0 0.2±0 

C19:0 0.4±0 0.3±0 0.2±0 0.3±0 0.3±0 0.3±0.1 0.4±0.1 0.4±0 0.5±0.1 0.3±0 0.2±0 0.3±0 

C20:4 (n-6) 0.3±0.1 0.5±0.2 0.8±0 0.7±0 0.2±0 0.2±0 0.2±0.1 0.4±0 0.2±0.1 0.3±0.1 0.3±0.1 0.2±0 

C20:5 (n-3) 1.9±0.6 3.7±1.3 6.3±0.1 4.5±0.6 0.4±0 0.7±0.3 0.4±0.3 0.7±0.2 0.4±0.1 1±0.4 1.4±0.6 0.7±0.3 

C20:3  0.5±0.1 0.7±0.1 0.9±0 0.8±0 0.3±0 0.2±0 0.3±0.2 0.3±0.1 0.3±0 0.2±0 0.3±0.2 0.1±0 

C20:2 0.5±0.2 0.5±0 0.5±0 0.5±0.1 0.3±0 0.3±0 0.1±0.1 0.4±0.1 0.3±0.1 0.3±0.1 0.4±0.1 0.3±0 
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Table S5. (cont.) 

CC. Callista chione - CETINA 

FAME May June July August September October November December January February March April 

C20:1 5.5±1.1 6.8±0.6 6.1±0.1 6.8±0.5 5.4±0.8 6.4±2.6 5.4±0.3 4.8±0.5 4.1±0.4 4.2±0.5 3.7±0.3 4.2±0.3 

C20:0 0.3±0 0.3±0 0.3±0 0.3±0 0.3±0 0.3±0 0.4±0 0.4±0 0.5±0 0.3±0 0.2±0 0.3±0 

C22:5 (n-3) 0.2±0 0.3±0.1 0.4±0 0.3±0 0.1±0.1 0.1±0.1 0.1±0.1 0.1±0 0.1±0.1 0.1±0 0.1±0 0.1±0 

C22:6 (n-3) 1.6±0.6 3.5±1.5 4.2±0.3 3.3±0.7 0.2±0 0.5±0.2 0.3±0.1 0.6±0.1 0.2±0 0.5±0.2 1±0.5 0.3±0.1 

C22:3 0.1±0 0.2±0.1 0.2±0 0.2±0 0.1±0 0.1±0 0.1±0 0.2±0.1 0.1±0 0.1±0 0.1±0 0±0 

C22:2  0.8±0 1±0.1 0.4±0.6 0.5±0.6 0.8±0.1 0.5±0.3 0.6±0 0.8±0.3 0.5±0 0.5±0.1 0.5±0.1 0.6±0.1 

C22:1 1±0.5 0.8±0.3 0.7±0.4 2.6±2.4 1.6±1.6 8.5±11.1 1.2±0.1 0.9±0.6 0.7±0.1 0.6±0.3 0.5±0.1 0.6±0.1 

C22:0 0.2±0.1 0.1±0 0.2±0 0.1±0 0.1±0.1 0.1±0 0.2±0.1 0.2±0 0.2±0.1 0.1±0.1 0.1±0 0.2±0 

C24:1  0±0 0.1±0 0.1±0.1 0.4±0.5 0±0 0±0 0.2±0.2 0.6±0.5 0±0 0±0 0±0 0±0 

C24:0 0.1±0 0.1±0 0.1±0 0.1±0 0.2±0 0.4±0.3 0.2±0.1 0.4±0 0.3±0.1 0.2±0 0.1±0 0.2±0.1 

ƩSFA 58±1.8 47.7±2.4 48.9±0.1 49.9±1.4 62.7±1.1 57.6±1.6 66±0.8 64.1±0.8 69.7±0.9 65.3±1.5 60.8±0.6 65.3±0.9 

ƩMUFA 32.7±1.3 38.3±1.2 33.9±1.2 36.3±0.9 32.3±0.2 37.1±1.2 30.1±0.2 29.5±0.5 25.7±0.5 28.5±0.2 30.4±0.3 29.4±0 

ƩPUFA 9.3±1.5 14±3.6 17.3±1.3 13.7±0.5 5±0.9 5.3±0.6 3.9±0.6 6.4±0.2 4.7±0.4 6.2±1.3 8.8±0.3 5.3±0.9 

ƩUND 1.1±0.2 2±0.4 2.2±0.1 1.9±0.3 0.7±0 1±0.4 0.6±0.1 0.8±0.1 0.6±0 0.7±0.1 1±0.2 0.7±0.1 

ƩDETRITAL 7.9±0.4 8±0.1 6±0.1 7.3±0.2 8.5±0.4 8.2±1.3 9±0.4 9.1±0.3 9.6±0.2 8±0.3 6.6±0.2 7.2±0.2 

C16:1/C16:0 0.4±0.1 0.7±0 0.5±0 0.5±0 0.4±0.1 0.3±0 0.3±0 0.3±0 0.3±0 0.3±0 0.4±0 0.3±0 

DHA/EPA 0.8±0.1 0.9±0.1 0.7±0 0.7±0 0.5±0 0.8±0 0.7±0.1 0.9±0.3 0.5±0.1 0.5±0 0.7±0.1 0.5±0 
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Table S6. Similarity percentage analysis (SIMPER) identifying those FA profiles which contribute the most in differentiating SPM and Sed from Pag and Cetina. 

SPM - Pag vs Cetina Sed - Pag vs Cetina 

FA Cont (%) Cum (%) FA Cont (%) Cum (%) 

C16:1 14.94 14.94 C18:2 (n-6) 19.56 19.56 

C18:2 (n-6) 13.52 28.46 PUFA 19.11 38.67 

PUFA 12.44 40.90 C16:1 15.80 54.46 

C20:5 (n-3) EPA 11.22 52.12 MUFA 12.52 66.99 

C22:6 (n-3) DHA 9.69 61.81 DETRITAL 11.78 78.77 

DETRITAL 9.31 71.11 C16:0 8.93 87.70 

MUFA 8.24 79.35 UND 5.05 92.75 

C20:4 (n-6) ARA 6.64 85.99 SFA 4.59 97.34 

C16:0 4.52 90.50 C16:1/C16:0 2.66 100.00 

UND 4.00 94.50 
   C16:1/C16:0 3.11 97.60 
   SFA 2.40 100.00       
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Table S7. Similarity percentage analysis (SIMPER) identifying those FA profiles which contribute the most in differentiating the diet of Callista chione from Pag and Cetina (PC-CC), 

Glycymeris bimaculata from Pag and Cetina (PG-CG), between both species in Pag (PG-PC) and in Cetina (CG-CC).  

PC-CC PG-CG PG-PC CG-CC 

FA Cont (%) Cum (%) FA Cont (%) Cum (%) FA Cont (%) Cum (%) FA Cont (%) Cum (%) 

C20:5 18.21 18.21 PUFA 17.86 17.86 PUFA 18.08 18.08 PUFA 14.99 14.99 

C22:6 17.46 35.67 C20:5 14.22 32.08 C20:5 14.38 32.46 C20:5 14.97 29.96 

PUFA 15.75 51.42 C22:6 14.18 46.26 C22:6 13.67 46.13 C22:6 14.38 44.34 

UND 8.40 59.82 UND 7.08 53.33 C16:1 8.49 54.62 C16:1 9.73 54.07 

C18:2 6.63 66.45 C18:2 7.07 60.40 UND 8.07 62.69 UND 7.30 61.37 

DETRITAL 5.79 72.24 C16:1 7.06 67.46 MUFA 6.24 68.92 MUFA 6.73 68.10 

C20:4 4.94 77.18 MUFA 6.90 74.37 C18:2 5.62 74.55 C18:2 6.67 74.77 

C16:1 4.44 81.63 DHA/EPA 6.77 81.13 DETRITAL 4.89 79.44 DHA/EPA 5.86 80.63 

DHA/EPA 4.44 86.06 C20:4 4.84 85.97 DHA/EPA 4.56 84.00 C20:4 4.43 85.06 

C16:0 4.09 90.16 DETRITAL 4.05 90.02 SFA 4.55 88.54 SFA 4.25 89.30 

SFA 4.03 94.18 C16:0 3.97 93.98 C20:4 4.33 92.87 C16:0 3.91 93.22 

MUFA 3.49 97.68 SFA 3.92 97.90 C16:0 4.21 97.08 DETRITAL 3.80 97.01 

C16:1/C16:0 2.32 100.00 C16:1/C16:0 2.10 100.00 C16:1/C16:0 2.92 100.00 C16:1/C16:0 2.99 100.00 

 

 

 

 

 



 

182 

 

Fig S1. Chlorophyll a 

extracted from satellite 

data from the MODIS-

Aqua sensor provided by 

the EU Copernicus Marine 

Service (CMEMS). Color 

bar represents 

concentration in mg/g
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9. PROŠIRENI SAŽETAK 

UVOD 

Morski školjkaši nastanjuju litoralne obale i često žive u velikim agregacijama koje imaju važnu ulogu u 

ekosustavu sudjelujući u stvaranju, modificiranju i održavanju okolnog staništa (Jones i sur., 1994; Dame, 

1996). S obzirom na njihovu široku geografsku i batimetrijsku raspodjelu, školjkaši mogu podnositi širok 

spektar okolišnih uvjeta koji reguliraju osobine životnog ciklusa (Gosling, 2015), što doprinosi zanimanju 

znanstvenika za njihovu primjenu u paleoklimatskim istraživanjima. Ljušture školjkaša ugrađuju 

informacije tijekom rasta što ih čini vrijednim arhivima ekoloških, bioloških i evolucijskih podataka 

(Richardson, 2001). Stoga, ljušture školjkaša mogu otkriti vrijedne podatke značajne za rekonstrukciju 

okolišnih varijacija i osobina životnog ciklusa od polarnih do tropskih staništa, te od slatkovodnih do 

morskih ekosustava (Goodwin i sur., 2001).  

Posljednjih godina, brzo se razvijaju sklerokronološka istraživanja školjkaša, s ciljem da se istraže 

međugodišnje varijacije u rastu, kao i varijacije u geokemijskom sastavu ljuštura (Schöne i Gillikin, 2013). 

Ljušture mekušaca su prepoznate kao koristan arhiv podataka o okolišu u rasponu od nekoliko godina do 

tisućljeća (Schöne i sur., 2005; Butler i sur., 2010; Reynolds i sur., 2013). Školjkaši čuvaju zapise visoke 

rezolucije o okolišnim uvjetima i osobine životnog ciklusa u prstenovima prirasta svoje ljušture (Schöne i 

sur., 2005), a omjeri izotopa kisika (δ18O) u karbonatima ljušture mogu otkriti da li su razlike u godišnjoj 

stopi kalcifikacije kontrolirane egzogenim i endogenim čimbenicima (Gosling, 2015). Temperatura je 

ključni parametar pri proučavanju rasta ljuštura školjkaša, a detaljne studije su čak mogle odrediti i polu-

dnevne obrasce rasta u nekim organizmima (prikaz u Schöne i Surge, 2012). Važnost svakog od 

čimbenika (primjerice temperature, saliniteta, gustoće fitoplanktona, cikličkih procesa, dobi i biološkog 

sata), u kontroli brzine i sezonalnosti rasta, varira među vrstama i prema latitudalnim gradijentima 

(Richardson, 2001). Upravo je kombinacija temperature, dostupnosti i kvalitete hrane, ona koja obično 

kontrolira unutar godišnji rast ljušture (Ansell, 1968; Witbaard, 1997; Ambrose i sur., 2012; Vihtakari i 

sur., 2016; Kubota i sur., 2017) iako je vjerojatno da će kombinacija različitih čimbenika rasta biti 

specifična za vrstu (Jones, 1980; Nishida i sur., 2012). 

Isto tako, vrijeme i trajanje fizioloških procesa poput reproduktivnog ciklusa, mogu varirati i prostorno i 

vremenski, čak i unutar vrste (Cardoso i sur., 2007; Santos i sur., 2011; Verdelhos i sur., 2011; Magalhães 

i sur., 2016). To je rezultat složenih interakcija između egzogenih i endogenih čimbenika od kojih su 

okolišne varijable, npr. temperatura i opskrba hranom, glavni regulatori koji pokreću gametogenezu i 

mriještenje (Sastry 1979; MacDonald i Thompson 1986; Sebens 1987; De Montaudouin 1996; Honkoop i 

Beukema 1997; Philippart i sur., 2003; Drent 2004; Carmichael i sur. 2004; Sokolova i sur. 2012). 
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Da li je raspodjela energije uravnotežena ili usmjerena više na reprodukciju ili rast, može biti svojstveno 

vrsti i može ovisiti o latitudalnom gradijentu na kojem te vrste žive i izložene su varirajućim 

temperaturama ili dostupnosti hrane (npr. Cardoso i sur. 2007). Stoga je potrebno utvrditi prirodu 

okolišnih i fizioloških čimbenika koji potiču rast ljušture za većinu vrsta školjkaša. Studije o ekologiji i 

karakterizaciji osobina životnog ciklusa školjkaša čine osnovni korak za interpretaciju obrazaca rasta 

ljušture prije uporabe školjkaša kao ciljane skupine organizama za paleoklimatološke studije i studije 

starenja. 

Početak sklerokronoloških istraživanja školjkaša u Sredozemlju zahtijeva identifikaciju ciljanih vrsta koje 

se mogu koristiti kao arhivi u paleoekologiji. Za ekološke interpretacije pri provođenju okolišnih 

rekonstrukcija na temelju obrazaca mikro-rasta ljušture, treba razumjeti osobine životnog ciklusa 

istraživane vrsta. Kombinacija detaljnih studija o okolišnim i biološkim čimbenicima, koji vode rastu 

ljušture, se rijetko primjenjuje, a to je izuzetno moćan alat za otkrivanje prisutnih promjena i testiranje 

ranijih evolucijskih hipoteza. Okolišni podatci visoke razlučivosti doprinose razumijevanju fizioloških 

procesa i drugih osobina životnog ciklusa, biogeografske rasprostranjenosti vrsta i učinkovitom 

upravljanju resursima ribarstva. Na temelju toga, ovaj rad analizira kombinirane učinke temperature 

mora, dostupnosti hrane, razmnožavanja i rasta, kod školjkaša iz Jadranskog mora. 

 

Obrazloženje i ciljevi 

Procjena promjena u morskom okolišu, uključujući promjene u bentosu, preduvijet je za implementaciju 

mjera zaštite okoliša od klimatskih promjena (IPCC 2001; IPCC 2007; IPCC 2014).  Razumijevanje otiska 

okoliša na ljušturama školjkaša je od vitalnog značaja za bolje razumijevanje procesa koji su odgovorni za 

te promjene, kao i za predviđanje potencijalnih poremećaja na morskim organizmima i ekosustavima 

koje održavaju. U posljednjih nekoliko godina, sve veći broj sklerokronoloških istraživanja školjkaša 

pokušava rekonstruirati klimu u sjevernom Atlantiku kako bi se predvidjeli budući scenariji. Međutim, u 

drugim dijelovima svijeta, uključujući i Sredozemno more, poznavanje bioloških i ekološkim čimbenika 

koji utječu na rast ljuštura još je prilično ograničeno. Rekonstrukcija životnih ciklusa ciljanih vrsta na 

lokalnoj razini je iznimno utjecajna u smislu pokazivanja sposobnosti prilagodbe školjkaša na povoljne i 

nepovoljne uvjete, te će pružiti korisne informacije pri rekonstrukciji prijašnjih uvjeta. Interni obrasci 

rasta ljuštura će se vremenski kontekstualizirati kako bi se procijenilo što kontrolira unutar godišnje 

promjene u polaganju ljušturnog materijala. Cilj ovog rada je procijeniti ekološke i biološke čimbenike 

formiranja ljušture analizirajući: (1) varijable okoliša te, (2) razmnožavanje, (3) ekologiju ishrane i (4) rast 

ljuštura ciljanih vrsta školjkaša. Tri ciljane vrste su odabrane na temelju njihove brojnosti, relativno 

dugog životnog ciklusa i ekološke uloge u Jadranu, Sredozemnom moru i Atlantiku: Callista chione 
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(Linnaeus, 1758), gospodarski važna vrsta te dvije relativno dugoživuće vrste iz roda Glycymeris, G. 

bimaculata (Poli, 1795) i G. pilosa (Linnaeus, 1767). Uzorkovanje je provedeno na tri lokacije na istočnoj 

Jadranskoj obali, uključujući Paški zaljev, ušće rijeke Cetine i Pašmanski kanal s ciljem da se objasne 

biološke varijacije unutar i između i vrsta u različitim staništima. Ciljevi rada su: 

 Analiza bentoske-pelagijske sprege u plitkim vodama srednjeg Jadrana kroz karakterizaciju 

lebdećih mikročestica (SPM) i sedimenta (Sed) na mjestima uzorkovanja 

 Opis ciklusa razmnožavanja istraživanih vrsta primjenjujući dva metodološka pristupa: histološku 

analizu i analizu gonadosomatskog indeksa 

 Opis indeksa tjelesne mase, reproduktivnog ulaganja, reproduktivnog rezultata i fekunditeta 

vrste C. chione uključujući usporedbu između dvije istraživane lokacije 

  Procjena utjecaja okolišnih varijabli (tj. temperature) i opskrbe hranom na ciklus razmnožavanja 

 Opis prostorno-vremenskih varijacija u ekologiji ishrane vrsta Glycymeris sp. i C. chione kroz 

kombiniranu primjenu analize stabilnih izotopa, masnih kiselina i drugih biomarkera (C:N omjer, 

Chl a, BSi) 

  Procjena prehrambenih niša istraživanih vrsta školjkaša analizom izotopa i masnih kiselina 

primjenom modela miješanja dvaju izvora  

 Opis mikro-obrazaca rasta ljušture primjenom sklerokemijskih metoda: mikro-mljevenje s 

vanjske površine ljušture vrste C. chione te mikro-mljevenje ljušturnog materijala iz poprečnih 

presjeka vrste G. bimaculata 

  Međusobno povezivanje okolišnih i bioloških čimbenika i njihovih utjecaja na brzinu i 

sezonalnost rasta ljušture  

  Utvrđivanje jesu li obrasci karakteristični za određenu vrstu ili određeno stanište  

 

MATERIJAL I METODE 

Područje istraživanja 

Tri lokaliteta u istočnom dijelu srednjeg Jadrana, uključujući Paški zaljev, ušće rijeke Cetine i Pašmanski 

kanal, su izabrani na osnovu njihovih različitih okolišnih značajki i razlika u rastu školjkaša zabilježenih u 

ranijim istraživanjima (Ezgeta-Balić i sur. 2011). Sve lokacije su plitka obalna mjesta i uzorci su prikupljeni 

na dubinama u rasponu od 1 do 5 m. 
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Varijable okoliša 

Temperatura mora je mjerena svaki sat putem data logger-a (Tinytag, Gemini®) razmještenih na svakoj 

lokaciji. Podaci o salinitetu zabilježeni su jednom mjesečno in situ sondom YSB. Mjesečni podaci o 

oborinama za meteorološke stanice Pag, Cetina (Split) i Pašman (Biograd) dobivene su iz Državnog 

hidrometeorološkog zavoda Republike Hrvatske. 

Uzorci mora su prikupljeni ~ 0,5 m iznad morskog dna metodom autonomnog ronjenja i ronjenja na dah 

koristeći Niskin crpac (između 10 ─ 20 L). Prethodno izvagani nitrocelulozni filteri su korišteni za 

mjerenje lebdećih mikročestica (SPM) i biogenih sadržaja silicija (BSi), dok su prethodno paljeni (450°C, 6 

h) i prethodno izvagani filteri od staklenih vlakana korišteni za mjerenje elementarnog  sastava i omjera 

% C i % N, te njihovog izotopnog sastava (δ13C i δ15N), masnih kiselina (FA) i koncentracija lipida. 

Koncentracija SPM je utvrđena na suhoj tvari ukupnih lebdećih čestica preostalih po jedinici volumena 

nakon sušenja (60°C, 24 h) (izraženo u mg/L). SPM filteri su također korišteni za analizu sadržaja BSi 

nakon sekvencijalne lužnate razgradnje (2 do 5 h) s NaCO3 za razlikovanje silicija litogenog i biogenog 

porijekla (Mortlock i Froelich 1989; DeMaster 1991) Klorofil a je ekstrahiran u 90%-tnom acetonu 

(Strickland i Parsons 1972) i izmjeren u fluorometru Turner Systems (Sunnyvale, CA) / (Trilogy). Sve 

kemijske analize su provedene na tri replike. Satelitski dobiveni podatci za klorofil a su izdvojeni iz 

senzora MODIS-Aqua od strane EU Copernicus Marine Service (CMEMS). 

Uzorci površine sedimenta (otprilike gornja 2 cm) (Sed) su prikupljeni mjesečno metodom autonomnog 

ronjenja pomoću plastičnog korera i pohranjeni na -20°C. Homogenizirani i samljeveni uzorci su korišteni 

za analize %C, %N i SI, uzorci klorofila a su ekstrahirani u 90%-tnom acetonu (4°C, 12 h) (Lorenzen i 

Jeffrey 1978), sadržaj Bsi mjeren je prema postupku za SPM, a ukupan ugljik (TC) je mjeren u analizatoru 

LECO Truspec CN 2000. Anorganski ugljik (IC) (izraženo u % suhe mase) je izračunat pomoću razlike 

između sadržaja TC i OC. Veličina zrna je određena u HORIBA LA950V2 laserskom analizatoru raspodjele 

mikročestica nakon uklanjanja organske tvari u 20%-tnoj otopini vodikovog peroksida. 

Ekologija ishrane 

Elementarni i izotopni sadržaji partikularnog organskog ugljika i dušika mjereni su iz filtera sušenih na 

50°C tijekom 24 sata, 50 mg za uzorak sedimenta (Sed) i 1 mg za uzorak digestivne žljezde (DG). Uzorci 

su liofilizirani i individualno homogenizirani koristeći ahatni mužar i tučak. Analize omjera stabilnih 

izotopa ugljika (13C/12C) i dušika (15N/14N), te elementarnih %C i %N, su provedene na analizatoru Carlo 

Erba Elemental Analyzer EA1108 zajedno s masenim spektometrom ThermoFinnigan MAT253 u Unidade 

de Técnicas Instrumentais de Investigación, Sveučilišta u A Coruña (Španjolska). 
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Model izotopnog miješanja dvaju izvora se izradio u paketu MixSIAR, grafičkom korisničkom sučelju 

(GUI) izrađenom na R softveru (Parnell i sur. 2010), koji koristi algoritam baziran na Bayesian statistici za 

određivanje raspodjele vjerojatnosti za proporcionalni doprinos izvora hrane kombiniranoj ishrani 

potrošača (Semmens i sur. 2013). Ovaj model objašnjava nesigurnost u vrijednostima izotopa pri 

procjeni doprinosa izvora u ishrani zbog razlike u ugradnji s obzirom na različita tkiva. Metoda The Stable 

Isotope Bayesian Ellipses in R (paket SIBER) se koristila za istraživanje niša izotopa proučavajući disperziju 

vrijednosti δ13C i δ15N. 

Za analize masnih kiselina (FAs), SPM, Sed i DG uzorci su prikupljeni u razdoblju od jedne godine i 

liofilizirani prije biokemijskih analiza. Za potpunu analizu lipida svi uzorci su vagani (DG uzorci su 

pomiješani), a kasnije je dodana smjesa (2:1) diklormetan-metanol (DCM: MeOH) izložena ultrazvučnom 

tretmanu u vodenoj kupelji na 30°C. Nakon odvajanja DCM faze su skupljene i osušene, te izvagane. 

Ukupni lipidi probavnih žlijezda su ponovno otopljeni u DCM-u, a neutralni lipidi su razdvojeni prema 

Pernet i suradnicima (2012). Svi ekstrakti (ukupni lipidi iz SPM i Sed i neutralni lipidi u DG) su 

saponificirani (1,2 M NaOH), zakiseljeni (6M HCl) i metilirani (14% BF3 u metanolu), a zatim ekstrahirani 

u DCM-u. Metil esteri masnih kiselina (FAME-ovi) su analizirani plinsko-tekućinskom kromatografijom 

Agilent (GLC), 6890 N GC sustavom opremljenim detektorom 5973 Network Mass Selective, kapilarnom 

kolonom (25m x 0.3 mm x 0,25 µm, cross-linked 5% fenilmetilsiloksan) i helijem ultra visoke čistoće kao 

nosećim plinom. FAs su navedeni u postotcima ukupnih masnih kiselina (% TFA, srednja vrijednost ± SD) 

i grupirani kao zasićene (SFA), mononezasićene (MUFA), PUFA i detritične masne kiseline (DETRITAL 15:0 

+ 15iso + 15anteiso + 17:0 + 17iso + 17anteiso + 18.1(n-7); (Mayzaud i sur. 1989; Najdek i sur. 2002). 

Stupanj nezasićenosti (UND) izračunat je prema Pirini i suradnicima (2007). 

Razmnožavanje: Histologija. U roku od tri sata od prikupljanja, školjkaši su otvoreni, komadić tkiva 

gonada seciran, fiksiran u 4% formaldehidu i pohranjen za kasniju laboratorijsku analizu. Obrada tkiva je 

provedena u laboratoriju dehidracijom u rastućim koncentracijama etanola (70%, 80%, 96% i 100%) i 

čišćenjem s Bioclear-om. Potom su uzorci tkiva uronjeni u parafin (Histowax, Leica), prerezani na 

mikrotomu (5 µm) i obojeni hematoksilinom i eozinom. Histološki preparati su ispitani pri 100x i 400x 

povećanju pomoću mikroskopa Zeiss Axio Lab.A1, određen je spol jedinki i faza razvoja gonada. Faze su 

opisane kao rana aktivna (3), kasnija faza razvoja (4), zrela faza (5), faza mriještenja (2) i neaktivna faza 

(1). 

Srednji gonadni indeks (MGI) je izračunat zasebno za muške i ženske jedinke množenjem broja jedinki iz 

svake razvojne faze po numeričkom poretku dodijeljenom toj fazi i dijeleći ga s ukupnim brojem jedinki u 

pojedinom mjesecu uzorkovanja. 
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Histološka analiza vrste Callista chione je provedena na oko 20 jedinki mjesečno po lokalitetu 

prikupljenih u razdoblju od srpnja 2014. do srpnja 2015. godine. Uzorci vrste Glycymeris bimaculata su 

prikupljeni u razdoblju od srpnja 2014. do kolovoza 2015. Sakupljanje 20 jedinki mjesečno je provedeno i 

na Pagu i Cetini. Uzorci vrste Glycymeris pilosa su prikupljeni u razdoblju od rujna 2014. do kolovoza 

2015. godine samo na lokaciji u Pašmanskom kanalu. Ova je vrsta bila vrlo rijetka na drugim lokacijama 

uzorkovanja, a Pašman je odabran kao mjesto s dovoljnim brojem dostupnih uzoraka za ovu analizu. 

Razmnožavanje: Gonadosomatski indeks. Školjkaši (~ 20 mjesečno) su otvoreni i gonade su pažljivo 

odvojene od somatskog tkiva, te su oba dijela tkiva smještena u odvojene, prethodno izvagane 

porculanske posude. Uzorci su osušeni u pećnici na 60°C tijekom 48 sati i izvagani da se dobije indeks 

somatske mase (SMI) i indeks gonadne mase (GMI). Ti indeksi su izračunati kao suha težina svakog dijela 

(somatski i gonadni) te podijeljena kubičnim dimezijama ljušture izražene u mg/cm3. Da bi se odredilo 

relativno ulaganje u razmnožavanje, gonadosomatski indeks (GSI) je izračunat kao gonadna suha masa 

(g) podijeljena suhom masom cijelog tijela (g). Nadalje, indeks tjelesne mase (BMI), koji se određuje kao 

zbroj SMI i GMI, korišten je kao mjera indeksa tjelesnog stanja. Reproduktivni učinak je analiziran kao 

postotak gameta pušten u okoliš i plodnosti kao razlike u gonadnoj masi prije i poslije mriještenja, 

pokazujući moguće sposobnosti organizma da proizvodi reproduktivne jedinke. 

Analiza GSI indeksa vrste Callista chione je provedena za uzorke prikupljene na Pagu i Cetini, dok je za 

vrstu Glycymeris bimaculata analiza GSI indeksa povedena samo za uzorke prikupljene na Pagu, zbog 

manje populacije ove vrste na području ušća rijeke Cetine. 

Rast 

Površinsko mikro-mljevenje ljuštura vrste C. chione te mikro-mljevenje ljušturnog materijala iz 

poprečnog presjeka ljuštura vrste G. bimaculata prikupljenih na području Paškog zaljeva i ušća rijeke 

Cetine primjenjeno je za prikupljanje uzoraka za analizu obrazaca mikro-rasta. Uzorci su prikupljeni 

prateći os maksimalnog rasta od ruba do mjesta rasta posljednje dvije godine. Koristila se bušilica 

Dremell® Fortiflex opremljena svrdlom od  0,3 mm (C. chione) i 1 mm (G. bimaculata) cilindričnog, 

dijamantom obloženog vrha zajedno sa stereomikroskopom opremljenim s dvostrukim reflektorskim 

glavnim osvjetljenjem (Olympus Europa Highlight 3100). Za prikupljanje dovoljno uzorka (od 50 do 120 

µm), male plitke linije su mikro-mljevene usporedo s rubom ljušture. 

Uzorci karbonata u prahu tretirani su 100%-tnom fosfornom kiselinom u borosilikatnim ampulicama 

ispranim helijem na 72°C. Spektrometar GasBench II-coupled Thermo Finnigan MAT 253 u 

kontinuiranom modu je mjerio rezultirajući CO2. Te analize su provedene na Institutu za geoznanosti 

Sveučilišta u Mainzu (Njemačka). 
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Uzorci morske vode za analizu stabilnih izotopa (δ18Owater) su prikupljeni na različitim mjestima unutar 

raspona gradijenta saliniteta od slatkovodnih (dobiveni iz estuarijskih i podmorskih izvora) do područja 

otvorenog mora. Odnos slanost-izotop kisika (linija miješanja) je obilježen svim mjerenjima omogućujući 

procjenu svojstava morske vode tijekom razdoblja uzorkovanja kako bi se dodijelila bolja procjena 

δ18Owater. Za rekonstrukciju temperature primjenila se paleotermometrijska jednadžba Grossman i Ku 

(1986.), s korekcijom od -0.27 ‰ (Dettman i sur., 1999.) koja se uobičajeno koristi kod aragonitnih 

ljuštura. 

Nadalje, drugi tanki presjek ljušture svakog uzorka vrste G. bimaculata korišten za analizu starosti 

jedinke. Uzorci su uronjeni oko 20-40 minuta uz stalno miješanje u Mutvei-otopinu prema porotokolu 

Schöne i suradnika (2005). Nakon bojenja, presjeci su fotografirani digitalnim fotoaparatom Canon EOS 

550D pričvršćenim na stereomikroskop Wild Heerbrugg M8 opremljen dvostrukim reflektornim glavnim 

osvjetljenjem (Schott VisiLED MC 1000). 

Za procjenu metaboličkog ugljika (CM) uzorci vode su mjereni tijekom 4 mjeseca za dobivanje δ13CDIC. 

Uzorci vode su prikupljeni u staklenim bočicama i 200 µl otopine CuSO4 (osnovna otopina 25,6 g CuSO4 * 

5H2O 100 mL-1) je ubrizgano kako bi se spriječila biološka aktivnost prema Taipale i Sonninen (2009). 

Statistička analiza 

Statističke pretpostavke normalnosti (Shapiro test) i homogenost varianci (Levenov test) potvrđene su 

prije svih ANOVA analiza. Dvosmjerne ANOVA-e su primjenjene za testiranje utjecaja lokacije (2 razine) i 

mjeseca (17 razina) u izvorima hrane i potrošačima. Preklapanje izotopnih niša je testirano SIBER i SIAR 

paketima u R (Parnell i sur. 2010; Jackson i sur. 2011). ANOSIM, SIMPER, PCA i nMDS su korišteni za 

analiz masnih kiselina kako bi se predočile vremenske razlike u izvorima hrane i potrošačima. 

Pearsonov koeficijent korelacije, hi-kvadrat test, dvosmjerne analize ANOVA i ANCOVA primjenjeni su za 

testiranje raznih parametara uključujući spol i duljinu ljušture između lokacija i kroz vrijeme. 

Apsolutne stope rasta su određene kako bi se uklonili ontogenetski trendovi rasta za svaki uzorak (1) 

izračunavanjem metodom najmanjih kvadrata u ravnoj liniji prema svakom pojedinom skupu podataka i 

(2) dijeljenjem izmjerenih vrijednosti s predviđenim udaljenostima rasta ljušture od rezultirajuće 

funkcije, što je omogućilo usporedive stope rasta između različitih veličina jedinki. Pearsonove korelacije 

su izmjerene između vrijednosti δ13Cshell i δ18Oshell.  

Sve analize su povedene u R v3.1.3 (Jackson i sur. 2011; R Core Team 2015) i PAST 3.0 statističkim 

paketima (Hammer i sur. 2001). 
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REZULTATI 

Okolišne varijable. Prosječne mjesečne vrijednosti temperature su pokazale jasan sezonski trend na 

svim lokacijama s rasponima od 8,9 do 25,1°C na Pagu, 12,7-26,4°C na ušču rijeke Cetine i 10,7-24,9°C na 

Pašmanu. Minimalne zabilježene temperature su bile 7,4, 10,9 i 6,1°C, a maksimalne one od 28,6, 28,6 i 

28,3°C na Pagu, Cetini i Pašmanu, respektivno. Mjesečni rasponi saliniteta su oscilirali od 34,7 do 38,3 na 

Pagu, 32,2 do 38,5 u ušću rijeke Cetine i 36,8 do 38,3 na Pašmanu. Najviši mjesečni prosjek oborina 

zabilježen je na Pagu s 111,1 ± 86,0 mm/cm3, a slijede Pašman 92,4 ± 78,3 mm/cm3 i Cetina 85,4 ± 55,5 

mm/cm3. 

Trofička ekologija dvije populacije vrsta C. chione i G. bimaculata 

Izvori hrane. Koncentracije SPM su imale srednje vrijednosti od 1,02 ± 0,33 mg/L na Pagu i 0,92 ± 0,35 

mg/L na Cetini i nisu se značajno razlikovale (P > 0,05) između lokacija. Vremenska varijacija Chl  aSPM je 

također bila slična na lokacijama (P > 0,05), i kretala se u rasponu od 0,2 do 0,6 µg/L na Pagu i 0,2-0,7 

µg/L na Cetini. Uočene su značajne razlike u Chl aSed između lokacija (P < 0,001), s rasponima od 0,4 do 

5,0 µg/g na Pagu i 1,1 do 11,8 µg/g na Cetini. Godišnji obrasci Chl aSPM i Chl aSed su bili u značajnoj 

korelaciji u Cetini (r = 0,49, P < 0,05), ali ne i na Pagu (r = 0,15, P > 0,05), što ukazuje na učinkovitiju 

pelagijsko-bentosku vezu u Cetini. Koncentracija BSiSPM je pokazala veliku vremensku varijabilnost u 

rasponu od 0,03 do 0,2 mg/L na Pagu i od 0,02 do 0,2 mg/L na Cetini, bez značajnih razlika između 

lokacija. Koncentracije BSiSed su bile u rasponu od 0,06 do 0,2% na Pagu i 0,1 do 0,3% na Cetini i pokazale 

su značajne razlike između lokacija (t-test, P < 0,05). BSiSPM i BSiSed su bili povezani tijekom većeg dijela 

trajanja istraživanja. 

Veličina zrna sedimenta je bila relativno konstantna s visokim sadržajem pijeska i šljunka, te niskog 

sadržaja mulja i gline (fini sediment), što je iznosilo <2%. Pijesak (2mm-63μm) je predstavljao veći dio u 

Cetini (87%) nego na Pagu (74%), dok je šljunka (> 2mm) bilo obilnije na Pagu (26% vs 11%). 

Stabilni izotopi. U uzorcima stupca vode izotopna vremenska varijacija je bila u rasponu od -25,56 do -

23,37 ‰ za δ13CSPM i 1,63-6,09 ‰ za δ15NSPM na Pagu i od -26,19 te -22,82 ‰ za δ13CSPM i 0,03-5,64 ‰ za 

δ15NSPM u Cetini. Obogaćenije izotopne vrijednosti zabilježene su tijekom ljeta i jeseni na obje lokacije. U 

sedimentu, izotopne vremenske varijacije su bile u rasponu od -22,74 do -22,0 ‰ za δ13CSed i -2,26 do 

3,92 ‰ za δ15NSed na Pagu, a od -26,74 do 26,48 ‰ za δ13CSed i 1,05-3,30 ‰ za δ15NSed u Cetini. Nije bilo 

evidentnog godišnjeg trenda u molarnim omjerima C: NSPM na bilo kojoj lokaciji, zabilježene vrijednosti 

su bile u rasponu od 7,3 do 10,6 na Pagu i od 6,9 do 11,2 na Cetini. Molarni omjeri C: NSed na Pagu su 

varirali od 5,2 do 21,19 dok su na Cetini bili od 6,2 do 9,7. Na Pagu su visoke vrijednosti zabilježene od 

proljeća do sredine ljeta. 
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Masne kiseline. Zabilježene su veće proporcije zasićenih masnih kiselina (SFA) s višim TFA% tijekom 

jeseni u uzorcima probavne žljezde školjkaša, vodenog stupca i sedimenta, te u probavnoj žljezdi 

također tijekom zime. Najniže vrijednosti SFA su zabilježene tijekom ljeta, kada je PUFA bila obilnija. 

Visoke vrijednosti PUFA i drugi pokazatelji svježeg materijala (EFA-ovi) u ljeto, a kasnije i proljeće, 

sugerirali su da su to razdoblja najviše kvalitete hrane u vodenom stupcu. 

Koncentracija lipidsSPM je bila u rasponu od 0,16 do 0,71 mg/L na Pagu i od 0,13 do 0,3 mg/L na Cetini 

prema sličnom vremenskom obrascu, s najnižom koncentracijom između kolovoza i listopada. U lipidsSed 

vrijednosti su se kretale od 0,36 do 1,20 mg / g na Pagu i 0,59 1,72 mg/g na Cetini i te su bile jedan red 

magnitude više od lipidsSPM. 

Potrošači. Stabilni izotopi. Varijacija δ13CDG bila je ovisna o vrsti, s vrijednostima nešto više osiromašenim 

s 13C u vrsti C. chione. Naprotiv, varijacija u δ15NDG je bila ovisna o lokalitetu, s vrijednostima više 

obogaćenim s 15N u Cetini. Uočen je blagi vremenski pomak između δ13CSPM i δ13CDG, gdje je varijacija u 

δ13CDG slijedila onaj δ13CSPM tjednima kasnije. Molarni omjer C:NDG je pokazao značajne razlike između 

lokacija, mjeseca i njihove interakcije za vrstu C. chione (P <0,001), ali oni su bili manje vidljivi za vrstu G. 

bimaculata (P> 0,001). 

Udio svakog izvora hrane u ishrani potrošača prema modelima MixSIAR je pokazao da su školjkaši 

koristili oba SPM i Sed, međutim, njegova relativna važnost se razlikovala među lokacijama. Sed kao izvor 

hrane je bio važniji za školjkaše s Paga, a tijekom ljeta mali udio činio je i SPM, dok je školjkašima s ušća 

Cetine SPM bio taj koji je najviše doprinosio njihovoj prehrani. 

Masne kiseline. Na Pagu su vrijednosti  MUFA, PUFA, C18: 2, EPA, DHA, UND i C16:1 bile najviše u ljeto, 

osobito za vrstu C. chione. Detritusne masne kiseline su bile obilnije za vrijeme jeseni i zime, iako 

prisutne tijekom cijele godine. U Cetini je uočen sličan vremenski trend, a obje vrste školjkaša pokazale 

su više vrijednosti MUFA, PUFA, C18:2, EPA, DHA i UND tijekom ljeta i proljeća. Ljeto je sezona kada je 

gustoća detritusa bila najniža za razliku od jeseni i zime, dok je C18:2 (n-6) bila najobilnija tijekom 

proljeća i ljeta. Koncentracija lipida u digestivnoj žljezdi kretala se od 188,34 do 335,39 mg/g u uzorcima 

C. chione iz Paga, od 189,59 do 363,90 mg/g u uzorcima C. chione iz Cetine, od 130,53 do 255,36 mg/g u 

uzorcima G. bimaculata iz Paga i od 125,07 do 201,78 mg/g u uzorcima G. bimaculata iz Cetine. 

Trofička ekologija dvije populacije vrste G. pilosa 

Izvori hrane. Srednja koncentracija SPM je bila niža na Pašmanu (0,81 ± 0,31 mg/L) nego na Pagu (1,02 ± 

0,33 mg/L). Vrijednosti Chl aSPM su bile u rasponu od 0,2 do 0,7 µg/L na Pašmanu i 0,2 do 0,6 µ/L na 

Pagu. Koncentracija BSiSPM je također pokazala visoku vremensku varijabilnost na Pašmanu, u rasponu 
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od 0,04 do 0,44 mg/L. Koncentracija lipida u SPM je pokazala sveukupno više vrijednosti na Pagu, u 

prosjeku 0,23 ± 0,02 mg/L, nego na Pašmanu, u prosjeku 0,14 ± 0,02 mg/L. 

Izotopni ciklus je bio prilično sinhroniziran između lokacija, a vrijednosti više obogaćene s 13C zabilježene 

su tijekom ljeta i jeseni na obje lokacije. Iako su molarni omjeri C:NSPM pratili sličan obrazac za vrijeme 

jeseni i zime, oni su se značajno razlikovali među lokacijama (P < 0,001), s rasponom od 7,7 do 11,6 na 

Pašmanu i od 7,3 do 10,6 na Pagu. 

Potrošač. Vrijednosti osiromašene s 13C su zamijećene tijekom kraja zime i proljeća, dok je porast prema 

bogatijim vrijednostima varirao među populacijama. Na Pašmanu, vrijednosti su bile više obogaćene u 

jesen i ljeto, dok su na Pagu najveće vrijednosti prikazane u jesen i početkom zime. Molarni omjer C: NDG 

je pokazao značajne razlike između lokacije i mjeseca (sve na P < 0,001), ali ne u njihovoj interakciji (P > 

0,05), što pokazuje da su se vremenske izotopne vrijednosti ponašale po sličnom obrascu među 

populacijama. Koncentracija lipida u probavnoj žljezdi je također analizirana sezonski na Pašmanu, te je 

uspoređena s istim mjesecima na Pagu. Prosječne vrijednosti na Pašmanu su bile  100,6 ± 7,1 mg/g, a 

one na Pagu su bile znatno više, 180,9 ± 5,3 mg/g. 

Reproduktivni ciklus 

Histološka analiza uzoraka vrste Callista chione. Ukupno 133 muških jedinki (54,3%), 105 ženskih (42,9%) 

i 7 hermafrodita (2,8%) su identificirani u populaciji s Paga, a 116 muških jedinki (52,7%), 97 ženskih 

(44,1%), 3 hermafrodita (1,4%) i 4 spolno neodređene jedinke (1,8%) su utvrđene u uzorcima iz Cetine. 

Omjer spolova se nije značajno razlikovao od 1:1 (chi-kvadrat = 3,294, P = 0,069 na Pagu i chi-kvadrat = 

1,695, P = 0,193 u Cetini). Period mriještenja je počeo ranije na Cetini (u siječnju 2015), razdoblje s 

blažim temperaturama (na ~ 14°C) koje bi pogodovalo ranijem sazrijevanju gonada, s glavnim vrhuncem 

mriještenja u proljeće produljeno je do lipnja/srpnja. Na Pagu, period mriještenja je počeo kasnije, u 

travnju 2015 (pri ~ 12 ° C), a glavni vrhunac se dogodio tijekom ljeta, s kratkim vremenskom periodom 

otpuštanja gameta (uglavnom tijekom srpnja) ukazujući na značajnu gonadnu pohranu tijekom 

gametogeneze. Visoke vrijednosti srednjeg gonadnog indeksa (MGI) su bile u obrnutoj korelaciji s 

temperaturom. 

Histološka analiza uzoraka vrsta Glycymeris bimaculata i G. pilosa  

Ukupno 178 muških jedinki (55,6%), 141 ženskih (44,1%) i jedan hermafrodit (0,3%) su identificirani u 

populaciji G. bimaculata s Paga, te 149 muških (53,2%), 129 ženskih (46,1%), jedan hermafrodit (0,4%) i 

jedna spolno neodređena jedinka (0,4%) su utvrđene u uzorcima iz Cetine. Omjer spolova je bio 1,0: 1,3 

na Pagu (chi-kvadrat = 4,292, P = 0,038), dok se na ušću rijeke Cetine nije značajno razlikovao od 1:1 (chi-

kvadrat = 1,439, P = 0,230). Analizom uzoraka Glycymeris pilosa iz Pašmana identificirano je ukupno 129 
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muških (51,1%), 121 ženskih (48,5%) i jedan spolno neodređeni primjerak (0,4%). Omjer spolova nije se 

značajno razlikovao od 1:1 (chi-kvadrat = 0,256, P = 0,613). 

Gametogeneza je počela oko listopada za vrstu G. bimaculata i u studenom za vrstu G. pilosa, nevezano 

s temperaturnim maksimumom. Period i vrijeme mriještenja populacija G. bimaculata u usporedbi s 

onima C. chione pokazali su neke sličnosti. Iako je razdoblje mriještenja bilo kraće za vrstu G. bimaculata 

nego za vrstu C. chione, glavni vrhunac mriještenja dogodio se također ranije na ušću Cetine (rujan 2014 

i kolovoz 2015 godine) nego na Pagu (rujan/listopad 2014 i rujan/listopad 2015 godine), tijekom dva 

uzastopna razdoblja. 

Gonadosomatski indeks 

Najveće prosječne vrijednosti BMI za vrstu C. chione su bile 37,94 i 36,42 na Pagu (odnosi se na travanj i 

svibanj 2015 godine) i 33,56 i 30,95 na Cetini (odnosi se na srpanj 2014 i lipanj 2015 godine). Vrijednosti 

BMI su imale veće raspone varjabilnosti na Pagu nego na Cetini. Slično tome, vrijednosti GSI s Paga 

(0,050 ± 0,046) su bile znatno veće od onih s Cetine (0,037 ± 0,031) (Mann-Whitney P < 0,001). 

Kombinacija oba indeksa je pokazala pozitivnu korelaciju (r = 0,77, P < 0,001) na Pagu, što ukazuje na 

sinkronizaciju u vremenskom uzorku. Ovaj uzorak nije zabilježen na Cetini (r = 0,13, P > 0,05). Tijekom 

najzrelijih stadija, prije mriještenja, najveća gonadna proizvodnja opažena je na Pagu, srednje težine 348 

± 13 mg, dok je u Cetini bila 165 ± 6,70 mg. Na temelju srednjih populacijskih vrijednosti, uzorci s Paga 

otpustili su 82% gonada, dok su oni iz Cetine otpustili gotovo svu gonadnu masu (96%). U pogledu 

plodnosti, a uz pretpostavku jednake težine za muške i ženske jedinke, veći dio gonadne mase u 

razmnožavanje je uložen u Cetini, unatoč većim ulaganjima i produkciji iz populacije s Paga. 

Za vrstu G. bimaculata, srednje vrijednosti BMI tijekom istraživanja su bile u prosjeku 22,4 ± 3,1. Najveća 

srednja mjesečna vrijednost BMI je bila 26,1 (kolovoz 2015 godine), a najniža prosječna je bila 18,4 

(prosinac 2014 godine). Najviše prosječne mjesečne vrijednosti GSI su bile 0,192, 0,204 i 0,208 (u 

kolovozu 2014 godine, te kolovozu i rujnu 2015 godine), a one najniže su zabilježene u listopadu obje 

godine, i to 0,012 (2014 godine) i 0,018 (2015 godine). Ova dva indeksa su imala pozitivnu korelaciju (r = 

0,63, P < 0,001), što ukazuje na sinkronizaciju u vremenskom uzorku. Tijekom najzrelijih faza, prije 

mriještenja, najviša srednja gonadna masa je bila 4,7 ± 1,3 g u kolovozu 2014 godine i od 5,3 ± 1,0 g, 

kako u kolovozu tako i rujnu, 2015. godine. Najveća zabilježena gonadna aktivnost u tom razdoblju je 

bila 6,8 g (kolovoz 2014. godine) i 7,4 g (rujan 2015. godine). Na temelju srednjih populacijskih 

vrijednosti, primjerci iz 2014. Godine otpustili su 93,8% gonada, a oni iz 2015. godine otpustili su 92,5%. 

U pogledu plodnosti, visok postotak gonadne mase uložen je u razmnožavanje. 
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Kombinacija histologije i gonadosmoatskog indeksa, je odredila ista glavna razdoblja mriještenja gdje su 

najviše vrijednosti gonadosomatskog indeksa korespondirale s mjesecima zrelosti i mriještenja. S druge 

strane, niske vrijednosti gonadosomatskog indeksa vezane su s neaktivnim i ranim razvojnih stadijima. 

Identificiran je prijelaz između zadnjeg događanja mriještenja i neaktivnog perioda. 

Rast: Mikro-mljevenje ljuštura vrste C. chione. Međugodišnje amplitude izotopa kisika ljuštura s Paga su 

bile od -0,82 do 2,24 ‰ u uzorcima jedinke AC1, od -0,78 do 2,25 ‰ u uzorcima jedinke AC2 i od -0,77 

do 2,46 ‰ u uzorcima jedinke AC3. Za ljušture iz Cetine ove amplitude su bile od -0,73 do 1,79 ‰ u 

uzorcima jedinke CC1, od -0,91 do 1,71 ‰  u uzorcima jedinke CC2 i od -0,84 do 1,51 ‰ u uzorcima 

jedinke CC3. Amplitude izotopa ugljika s Paga su bile u rasponu od -1,20 do 0,03 ‰ u uzorcima jedinke 

AC1, od -1,51 do -0,16 ‰ u u uzorcima jedinke AC2 i od -0,42 do -0,06 ‰ u uzorcima jedinke AC3. Za 

ljušture iz Cetine vrijednosti su bile u rasponu od -1,36 do 0,02 ‰ uzorcima jedinke u uCC1, od -1,02 do -

0,07 ‰ u uzorcima jedinke CC2 i od -1,08 do -0,21 ‰ u uzorcima jedinke CC3. Značajne negativne 

korelacije postojale su između δ18Oshell i δ13Cshell osim za ljušturu CC3. Utvrđivanje vremena formiranja 

rasta ljušture usmjereno je na niz linija rasta koje su bili smještene između ljeta i rane jeseni. Otkrivene 

su temperaturne amplitude godišnje varijacije δ18Oshell, a sezona rasta utvrđena je za razdoblje od svibnja 

do prosinca. Svaka promjena od 4,34°C u temperaturi rezultira u pomaku od jednog promila u karbonatu 

ljušture, dakle, ljušture jedinki s Paga su pokrile raspon temperature od 13,2 - 14,0°C, dok su se 

vrijednosti rekonstruirane temperature iz uzoraka ljuštura jedinki s Cetine kretale od 10,2 - 11,4°C, što 

predstavlja nižu amplitudu od izmjerene temperature morske vode (16,2°C na Pagu, 13,7°C u Cetini). 

Rezultati istraživanja ukazuju da ljuštura prestaje rasti u razdoblju između siječnja i travnja, na obje 

lokacije. 

Mjeseci s najvišim prosječnim stopama rasta ljušture na Pagu su bili srpanj (25,3%), kolovoz (19,7%) i 

svibanj (12,2%); a niže stope rasta su dobivene u rujnu (9,6%), listopadu (9,4%) i lipnju (7,1%). Na Cetini, 

najviše srednje vrijednosti rasta ljušture dobivene su u kolovozu (17,4%), listopadu (14,2%), lipnju 

(13,7%) i srpnju (23,0%); dok su niže srednje stope rasta dobivene u prosincu (6,5%) i svibnju (5,0%). 

Ljušture nisu rasle u razdoblju od siječnja do ožujka. Stope rasta ljušture su bile u korelaciji s 

temperaturom mora i povezane s gonadosomatskim indeksom i δ13CSPM. 

Rast: Mikro-mljevenje ljuštura vrste G. bimaculata. Međugodišnje amplitude izotopa kisika ljuštura s 

Paga su bile od -0,49 do 1,84‰ u uzorcima jedinke AB1 i od -0,47 do 1,67‰ u uzorcima jedinke AB3. 

Amplitude u analiziranim ljušturama iz Cetine su se  kretale u rasponu od -0,83 do 2,24‰u uzorcima 

jedinke CB1, od -0,33 do 1,54‰ u uzorcima jedinke CB2 i od -0,57 do 2,44‰ u uzorcima jedinke CB3. 

Amplitude izotopa ugljika iz Paga su se kretale u rasponu od 0,03 do 1,25‰ u uzorcima jedinke AB1 i od 
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-0,52 do 0,38‰ u uzorcima jedinke AB3. U analiziranim uzorcima iz Cetine te vrijednosti su se kretale u 

rasponu od 0,35 do 1,77‰ (CB1), od 0,33 do 0,95‰ (CB2) i od 0,49 do 1,72‰ (CB3). Korelacije između 

δ18Oshell i δ13Cshell su varirale među uzorcima, pokazujući značajnu pozitivnu korelaciju u AB3 i negativne 

korelacije u drugim uzorkovanim ljušturama, iako su samo u CB1 i CB3 bile značajne. Rekonstruirane 

temperature na Pagu su bile u rasponu od 13,4 do 27,1°C (AB1) i 15,2 do 26,0°C (AB3), dok su u Cetini 

rasponi oscilirali između 14,0 do 28,9°C (CB1), 17,4 do 26,5°C (CB2) i 13.5 do 27.7°C (CB3). Ove 

vrijednosti su u okviru maksimalnih zabilježenih temperatura koje su bile 28,6°C na obje lokacije. 

Minimalne temperature su bile 7,4°C na Pagu i 10,9°C na Cetini što ukazuje na prestanak rasta ljuštura 

tijekom hladnijeg perioda u godini. 

Razdoblja s najvećim rastom u ljušturi AB1 su bili lipanj s 13,6%, kolovoz s 22,7% i srpanj s 29,5%. U 

ljušturi AB3 su razdoblja s najvišom stopom rasta bili svibanj s 16,1%, srpanj s 22,6% i lipanj s 25,8%. 

Mjeseci s najmanjim rastom ljušture su bili studeni s 4,5 i 6,5% i prosinac s 4,5 i 0% za AB1 i AB2, 

respektivno. CB2 primjerak iz Cetine je pokazivao lipanj i srpanj kao mjesece s najvišim stopama rasta 

ljušture. U primjercima s Cetine, korišten je prosjek od 4 uzorka δ13CDIC kako bi se dobila gruba procjena 

metaboličkog ugljika, što je predstavljalo 8%. 

 

RASPRAVA 

Ova disertacija daje uvid u biološke i ekološke čimbenike koji utječu na rast ljuštura školjkaša. Rezultati 

su pokazali da dvije istraživane vrste, C. chione i G. bimaculata, iako s različitim okolišnim značajkama, 

ovisno o lokacijama, imaju zajedničko razdoblje prestanka rasta, sugerirajući opskrbljivanje hranom kao 

ograničavajući čimbenik. Smanjeni rast ljušture tijekom kasne jeseni i zime, kada su temperature mora i 

dostupnost hrane bili najniži, zajedno s početkom gametogeneze, ukazuju na smanjeni rast ljušture kao 

posljedicu nepovoljnih uvjeta okoliša i veću potrebu za reproduktivnim naporom. Glavni zaključci ove 

studije, koja obuhvaća okolišne karakteristike, hranjenje, razmnožavanje i rast, su sljedeći: 

• Mješavina morskih i kopnenih izvora dominira vremenskom varijacijom mikročestica u obalnom dijelu 

srednjeg Jadrana. 

• Niski %C i %N su karakteristični, potvrđujući slabu nutritivnu kvalitetu sedimenta u ovom oligotrofnom 

okolišu. 

• Analize stabilnih izotopa i masnih kiselina upućuju da su proljeće i ljeto razdoblja s najboljom 

kvalitetom hrane u mikročesticama. 
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• δ13C je bio specifičan za vrstu, s više obogaćenim vrijednostima u vrsti G. bimaculata nego vrsti C. 

chione, dok je δ15N bio specifičan za lokalitet, s više obogaćenim vrijednostima u Cetini. 

• Nije uočeno preklapanje u ishrani između vrsta G. bimaculata i C. chione sugerirajući podjelu resursa. 

Populacije na Pagu su pokazale veći doprinos sedimenta u njihovoj ishrani, a prisutnost bentosne 

diazotrofne biomase je vjerojatno bila odgovorna za nisku δ15N u njihovoj prehrani. 

• Specifičnost lokaliteta je bila dominantna pri usporedbi izotopnog sastava dviju populacija vrste G. 

pilosa, s više obogaćenim vrijednostima na Pašmanu. 

• Ovaj rad naglašava važnost uzimanja u obzir i prostornih i vremenskih promjena i prednosti 

kombiniranja skupa biokemijskih parametara u studijama ekologije prehrane. 

• Histologija i gonadosomatski indeks su opisali glavne promjene u gametogenskom ciklusu dviju vrsta (C 

chione i G. bimaculata) s različitim reproduktivnim strategijama. 

• Varijacije između lokacija, u vremenu i trajanju mriještenja C. chione, su najvjerojatnije rezultat razlika 

u temperaturi mora između istraživaih lolacija. 

• Različite reproduktivne strategije između populacija C. chione, kao rezultat sposobnosti prilagodbe 

vrsta, predviđajući nepovoljne uvjete (Pag) resorpcijom gonada. 

• Odgođen interval i vrijeme mriještenja u Glycymeris sp. je vjerojatno u vezi s potrebom za više 

vremena za pohranu energije uz postojeću opskrbu hranom. 

• BMI ne može uvijek biti naveden kao pokazatelj stanja organizma u školjkaša. 

• Sezonska varijacija u vrijednostima δ18Oshell izmjerenim kod analizanih jedinki C. chione i G. bimaculata, 

ukazuje da se rast ljušture odvija u razdoblju između svibnja i prosinca. 

• Linije godišnjeg rasta koje predstavljaju usporen rast ili zaustavljanje rasta ljušture su jasno vidljive na 

dijelovima ljušture položenim na kraju ljeta i početkom jeseni kod vrste C. chione. Kod mladih jedinki 

vrste G. bimaculata linije rasta nastaju u vrijeme temperaturnog maksimuma dok je kod odraslih jedinki 

ostalo nejasno kada dolazi do formiranja linije rasta. 

• Temperatura je važna odrednica rasta ljušture, dok bi dostupnost hrane mogla postaviti granice 

sezone rasta ljušture. 

• Sklerokronologija povezana s fiziološkim i ekološkim istraživanjima pridonosi boljem razumijevanju 

osobina životnih ciklusa vrsta.
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CONTROLADORS BIOLÒGICS I ECOLÒGICS DEL CREIXEMENT DE LA CLOSCA EN ELS BIVALVES 

Ariadna Purroy Albet 

Tesi doctoral realitzada a l’Institut d’Oceanografia i Pesca, Split 

Resum 

Els mol·luscs bivalves incorporen en les seves closques aspectes de la història de vida durant el 

creixement, convertint-los en valuosos arxius d’informació ambiental, biològica i evolutiva. En aquesta 

tesi es proporciona informació detallada sobre els controladors biològics i ambientals del creixement de 

la closca a Callista chione, Glycymeris bimaculata i G. pilosa. L’estudi s’ha dut a terme a la costa mig-est 

del Mar Adriàtic (Abadia de Pag, desembocadura del riu Cetina i Canal de Pašman) des de maig del 2014 

fins a l’octubre de 2015. Mitjançant l’anàlisi de diversos paràmetres bioquímics incloent-hi isòtops 

estables i la composició d’àcids grassos, s’ha caracteritzat l’ecologia alimentària d’aquestes espècies en 

el seu hàbitat. El comportament reproductiu s’ha estudiat aplicant dos enfocaments complementaris, la 

histologia i l’índex gonadosomàtic. Per últim, l’anàlisi d’isòtops estables de mostres carbonatades s’ha 

relacionat amb registres de temperatura d’alta resolució per descriure els patrons de microcreixement 

de la closca. Els períodes amb la millor qualitat alimentària a la matèria particulada van identificar-se a la 

primavera i a l’estiu. Es va observar una repartició dels recursos alimentaris entre C. chione i G. 

bimaculata a cada àrea d’estudi, i es va veure que la composició isotòpica del nitrogen al teixit dels 

bivalves estava influenciada per la presència de biomassa diazotròfica, i aquesta els diferenciava entre 

localitats. Les variacions en l’inici i durada de la fresa entre les àrees d’estudi estan probablement 

associades a la temperatura, mentre que a Glycymeris sp., la fresa no hi està directament conectada. 

Aquestes respostes biològiques a petita escala són essencials per fer front a les influències del canvi 

climàtic. La formació de la closca es va produir entre el maig i el desembre assenyalant (1) la 

temperatura com un determinant important del creixement de la closca (2) la disponibilitat de nutrients 

com a limitant de l’època de creixement i (3) l’inici de la gametogènesi prop de la formació de la línea de 

creixement, el que evidencia majors requeriments d’energia per a la reproducció. Aquests resultats 

contribueixen al coneixement sobre l’ecologia de bivalves al Mar Adriàtic i destaquen la importància 

d’unir estudis d’esclerocronologia i ecologia per entendre millor aspectes de la història de vida de les 

espècies. 

Paraules clau: bivalves, ecologia alimentària, àcids grassos, isòtops estables, histologia, índex 

gonadosòmatic, creixement de la closca, escloroquímica, esclerocronologia, Mar Adriàtic. 

 

“What is a scientist after all? It is a curious man looking through a keyhole, the keyhole of nature, trying to 

know what's going on” 

 

Jacques Yves Cousteau 


